Unknown

Dataset Information

0

Point-of-care system for rapid real-time detection of SARS-CoV-2 virus based on commercially available Arduino platforms.


ABSTRACT: The COVID-19 pandemic emphasized the importance of rapid, portable, and on-site testing technologies necessary for resource-limited settings for effective testing and screening to reduce spreading of the infection. Realizing this, we developed a fluorescence-based point-of-care (fPOC) detection system with real-time reverse transcriptase loop-mediated isothermal amplification for rapid and quantitative detection of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. The system is built based on the Arduino platform compatible with commercially available open-source hardware-software and off-the-shelf electronic components. The fPOC system comprises of three main components: 1) an instrument with integrated heaters, 2) optical detection components, and 3) an injection-molded polymeric cartridge. The system was tested and experimentally proved to be able to use for fast detection of the SARS-CoV-2 virus in real-time in less than 30 min. Preliminary results of testing the performance of the fPOC revealed that the fPOC could detect the SARS-CoV-2 virus at a limit of detection (LOD50%) at two to three copies/microliter (15.36 copies/reaction), which was comparable to reactions run on a standard commercial thermocycler. The performance of the fPOC was evaluated with 12 SARS-CoV-2 clinical throat swab samples that included seven positive and five negative samples, as confirmed by reverse transcription-polymerase chain reaction. The fPOC showed 100% agreement with the commercial thermocycler. This simple design of the fPOC system demonstrates the potential to greatly enhance the practical applicability to develop a totally integrated point-of-care system for rapid on-site screening of the SARS-CoV-2 virus in the management of the pandemic.

SUBMITTER: Van Ngoc H 

PROVIDER: S-EPMC9385952 | biostudies-literature | 2022

REPOSITORIES: biostudies-literature

altmetric image

Publications

Point-of-care system for rapid real-time detection of SARS-CoV-2 virus based on commercially available Arduino platforms.

Van Ngoc Huynh H   Quyen Than Linh TL   Vinayaka Aaydha Chidambara AC   Bang Dang Duong DD   Wolff Anders A  

Frontiers in bioengineering and biotechnology 20220804


The COVID-19 pandemic emphasized the importance of rapid, portable, and on-site testing technologies necessary for resource-limited settings for effective testing and screening to reduce spreading of the infection. Realizing this, we developed a fluorescence-based point-of-care (fPOC) detection system with real-time reverse transcriptase loop-mediated isothermal amplification for rapid and quantitative detection of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. The syste  ...[more]

Similar Datasets

| S-EPMC8215874 | biostudies-literature
| S-EPMC7767212 | biostudies-literature
| S-EPMC8013610 | biostudies-literature
| S-EPMC7320699 | biostudies-literature
| S-EPMC7336952 | biostudies-literature
| S-EPMC7690900 | biostudies-literature
| S-EPMC8443584 | biostudies-literature
| S-EPMC9324382 | biostudies-literature
| S-EPMC8906416 | biostudies-literature
| S-EPMC4712027 | biostudies-literature