Ontology highlight
ABSTRACT: Background
Assessment of glomerular lesions and structures plays an essential role in understanding the pathological diagnosis of glomerulonephritis and prognostic evaluation of many kidney diseases. Renal pathophysiological assessment requires novel high-throughput tools to conduct quantitative, unbiased, and reproducible analyses representing a central readout. Deep learning may be an effective tool for glomerulonephritis pathological analysis.Methods
We developed a murine renal pathological system (MRPS) model to objectify the pathological evaluation via the deep learning method on whole-slide image (WSI) segmentation and feature extraction. A convolutional neural network model was used for accurate segmentation of glomeruli and glomerular cells of periodic acid-Schiff-stained kidney tissue from healthy and lupus nephritis mice. To achieve a quantitative evaluation, we subsequently filtered five independent predictors as image biomarkers from all features and developed a formula for the scoring model.Results
Perimeter, shape factor, minimum internal diameter, minimum caliper diameter, and number of objects were identified as independent predictors and were included in the establishment of the MRPS. The MRPS showed a positive correlation with renal score (r = 0.480, p < 0.001) and obtained great diagnostic performance in discriminating different score bands (Obuchowski index, 0.842 [95% confidence interval: 0.759, 0.925]), with an area under the curve of 0.78-0.98, sensitivity of 58-93%, specificity of 72-100%, and accuracy of 74-94%.Conclusion
Our MRPS for quantitative assessment of renal WSIs from MRL/lpr lupus nephritis mice enables accurate histopathological analyses with high reproducibility, which may serve as a useful tool for glomerulonephritis diagnosis and prognosis evaluation.
SUBMITTER: Shen L
PROVIDER: S-EPMC9386416 | biostudies-literature | 2022 Jul
REPOSITORIES: biostudies-literature
Shen Luping L Sun Wenyi W Zhang Qixiang Q Wei Mengru M Xu Huanke H Luo Xuan X Wang Guangji G Zhou Fang F
Kidney diseases (Basel, Switzerland) 20220607 4
<h4>Background</h4>Assessment of glomerular lesions and structures plays an essential role in understanding the pathological diagnosis of glomerulonephritis and prognostic evaluation of many kidney diseases. Renal pathophysiological assessment requires novel high-throughput tools to conduct quantitative, unbiased, and reproducible analyses representing a central readout. Deep learning may be an effective tool for glomerulonephritis pathological analysis.<h4>Methods</h4>We developed a murine rena ...[more]