Project description:Investigations on the molecular composition of coal pyrolysis products can help us to improve nonfuel utilization of coal. Meanwhile, the molecular composition of coal pyrolysis products is also influenced by the characteristics and depositional environment of coal. However, due to the extremely complex nature of coal, direct investigation of the molecular composition of coal pyrolysis products is still a challenge. In the present work, the data of the molecular composition of bituminous coal pyrolysis products are obtained by online pyrolysis coupled to comprehensive two-dimensional gas chromatography and mass spectrometry (online py-GC×GC-MS) and are divided into nine molecular groups depending on the aromaticity of the pyrolysis products and separating power of the GC×GC-MS. Chemometric tools, hierarchical cluster analysis, and principal component analysis are employed to reveal the correlations among the molecular composition of coal pyrolysis products and coal characteristics. The results show that the nine molecular groups of bituminous coal pyrolysis products can be divided into two clusters, the "aromatic group" and the "aliphatic group", and that the eight coals are divided into three clusters, all of which can be interpreted by the depositional environments and δ13CVPDB values of coals. Moreover, a simple and empirical equation for estimation of coal tar from hydropyrolysis can be obtained depending on the chemometric results of the molecular composition of the coal pyrolysis products. By application of chemometrics, the molecular composition of coal pyrolysis products can provide preference to industrial utilization of coal.
Project description:In order to improve the quality of catalysis products of algae, composite molecular sieve catalyst was prepared by digestion and crystallization of HZSM-5 to reduce the oxygen content of the catalytic products. According to the analysis of the pyrolysis products, the best preparation conditions were chosen of tetra propylammonium hydroxide (TPAOH) solution 2.0 mol l-1, cetyltrimethylammonium bromide (CTAB) solution 10 wt%, crystallization temperature 110°C, digestion-crystallization time: 24-24 h. The results indicate that the main function of catalysts is to promote the conversion of alcohols into hydrocarbons by reducing energy barriers. Catalysed by the composite molecular sieve, the content of alcohols in the pyrolysis products decreased from more than 30% to less than 10%, the content of hydrocarbons increased from 20% to nearly 60%, while all the adverse components remained at a low level, which indicates that the catalytic pyrolysis products are of high quality. The great deoxidation effect of composite molecular sieves is not only due to the expansion of the range of organic matter during re-pyrolysis, but also the increasing of the residence time of pyrolysis products inside the structure for the external mesoporous structure.
Project description:To understand the fast pyrolysis kinetics and product evolution of waste pine sawdust, high heating rate thermogravimetry-Fourier transform infrared (TG-FTIR) was used to obtain the kinetic parameters and the chemical groups formed during the pyrolysis process, while pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) was used to investigate the detailed compositions of products under the staged (seven stages from 300 to 600 °C) and direct fast pyrolysis process. Spectral bands were identified for acids, alcohols, aldehydes, aromatics, esters, ethers, hydrocarbons, ketones, phenols, and sugars. Research found that the apparent activation energy for fast pyrolysis is much higher than that of slow pyrolysis. The evolution of CO2 is the major deoxygenation route. Cracking mainly occurred at the 450 °C stage with phenols, ketones, aldehydes, and sugars as the main products. The product distributions for different stages are significantly different; the selectivity of aldehydes decreased, while phenols showed an upward trend with an increase in pyrolysis temperature. Ketones and sugars reached their peak values at 450 °C. The changes in the molecular composition of each stage helped to understand the pyrolysis process. Compared with the staged pyrolysis, the direct pyrolysis process had higher selectivity of acids, aldehydes, esters, and sugars and lower selectivity of phenols, ketones, and alcohols.
Project description:The present work aimed to study different parts of colored cotton waste through energetic characterization and analytical flash pyrolysis. Stalks and bolls of BRS cotton cultivars from Sementes do Brasil (Green, Ruby, Topaz and Jade) were studied, using white cotton (BRS 286) as a comparison. The energetic potential of biomass was evaluated by bulk density, High Heating Value (HHV), proximate and ultimate analysis, compositional and thermogravimetric analysis (TGA). Pyrolysis was performed in a micro-pyrolyzer and the products were identified by gas chromatography and mass spectroscopy (Py-GC/MS). The results indicated a significant energetic potential, suggesting that can be used as an alternative energy source for thermochemical processes. The results of conventional pyrolysis indicated the presence of oxygenated compounds of different organic groups: aldehydes, ketones, phenols, furans and ethers, characteristic of the decomposition of lignocellulosic materials. Light organic acids in the C1-C4 range stood out the most, followed by phenols that appeared in a considerable proportion. Finally, it is concluded that the energy potential and pyrolysis products of the different parts (stalks and bolls) of colored cotton waste can be used to generate bioenergy and various chemical compounds of plant origin from green chemistry.
Project description:Printed circuit boards (PCBs) constitute an important segment of electronic waste that can be effectively utilized to recover valuable metals and organics. The present work is focused on the kinetics and product distribution from pyrolysis of three different PCB samples, viz., television PCB (TV PCB), motherboard PCB (MB PCB), and hard disk PCB (HD PCB). The PCBs were pretreated to eliminate most of the metallic constituents. Kinetic analysis was performed using Vyazovkin's isoconversional method and distributed activation energy model (DAEM). The average apparent activation energies obtained from the Vyazovkin method were 207.2, 158.9, and 179.7 kJ mol-1 for the TV PCB, MB PCB, and HD PCB, respectively. The DAEM with five, four, and four pseudo-components was used to describe the decomposition kinetics of the TV PCB, MB PCB, and HD PCB, respectively. Importantly, two types of distributions, viz., Gaussian and Weibull, were utilized to effectively model the nonisothermal data obtained from thermogravimetric analysis at 10 and 20 °C min-1. The evolution of pyrolysates belonging to functional groups such as phenolics, aromatics, aliphatics, halogenated compounds, N-containing compounds, and oxygenates was studied at two different temperatures (500 and 700 °C) using analytical pyrolysis-gas chromatograph/mass spectrometry (Py-GC/MS). The Py-GC/MS results demonstrated an increase in selectivity to aromatics and straight-chain aliphatics at 700 °C with a concomitant decrease in selectivity to phenols and oxygenates.
Project description:Plum brandy (Slivovitz (en); Šljivovica(sr)) is an alcoholic beverage that is increasingly consumed all over the world. Its quality assessment has become of great importance. In our study, the main volatiles and aroma compounds of 108 non-aged plum brandies originating from three plum cultivars, and fermented using different conditions, were investigated. The chemical profiles obtained after two-step GC-FID-MS analysis were subjected to multivariate data analysis to reveal the peculiarity in different cultivars and fermentation process. Correlation of plum brandy chemical composition with its sensory characteristics obtained by expert commission was also performed. The utilization of PCA and OPLS-DA multivariate analysis methods on GC-FID-MS, enabled discrimination of brandy samples based on differences in plum varieties, pH of plum mash, and addition of selected yeast or enzymes during fermentation. The correlation of brandy GC-FID-MS profiles with their sensory properties was achieved by OPLS multivariate analysis. Proposed workflow confirmed the potential of GC-FID-MS in combination with multivariate data analysis that can be applied to assess the plum brandy quality.
Project description:Diesel has been the most employed fuel in highway and nonhighway transportation systems. Many studies over the past years have attempted to classify diesel as a stable or unstable composition since this fuel can still degrade during storage or thermal oxidative processes. Products generated because of such degradation are the reason for the formation of soluble gums and insoluble organic particulates, which in turn cause a negative influence on engine performance. This work reports a detailed composition of nonpolar and polar compounds in many ultralow-sulfur diesel (ULSD) samples by comprehensive two-dimensional gas chromatography with a flame ionization detector (GC × GC-FID) and electrospray ionization high-resolution mass spectrometry (ESI HR-MS). In addition, chemometric approaches were applied for ULSD storage stability investigation. GC × GC-FID experiments achieved the nonpolar chemical characterization for the ULSD samples, including all main hydrocarbon classes: paraffins, mono- and dinaphthenics and olefins, and aromatics. The GC × GC-FID data combined with principal component analysis (PCA) described that the separation of the samples' concerning storage stability was mainly due to the contents of mono- and diaromatic compounds in the unstable ULSD samples. Moreover, PCA was also applied to the ESI (±) data set, and the results highlight the presence of compounds belonging to O class (natural antioxidants), which decrease the rate of oxygen consumption in the fuel, characterizing it as stable composition. The basic nitrogen compounds are mostly present in the stable ULSD samples indicating that they did not affect the stability of the fuel. On the other hand, the HC classes presented pronounced abundance among unstable ULSD samples suggesting that the fuel degradation may go through the oxidation of hydrocarbons and the formation of Ox compounds as byproducts. Furthermore, MS/MS experiments point to the formation of CcHhNnOo-like precursor species, which can react with each other and lead to the formation of gums and insoluble sediments in the fuel. In summary, the results express the potential of using the GC × GC-FID and ESI (±) Orbitrap MS techniques as valuable tools for diesel stability evaluations.
Project description:Aquilaria oil, specifically agarwood oil, is esteemed for its unique fragrance and potential therapeutic qualities, primarily attributed to the presence of significant chemical compounds. These compounds play a vital role in shaping the quality and attributes of Aquilaria oil. The distinct aroma, characterized by intricate, woody, and multifaceted notes, originates directly from specific sesquiterpenes, with notable contributors like agarospirol defining this aromatic profile. The richness and complexity of the oil's scent are closely linked to the concentration and variety of noteworthy compounds within it. Oils containing a diverse range of sesquiterpenes are often considered superior, providing a more refined olfactory experience. This dataset presents a statistical analysis of the chemical compounds present in agarwood oil obtained through the hydrodistillation method from three distinct Aquilaria (A.) species: A. crassna, A. malaccensis, and A. subintegra. The analysis of these chemical compounds utilized Gas Chromatography-Mass Spectrometer (GC-MS) coupled with Gas Chromatography - Flame Ionization Detector (GC-FID). This study's data is crucial for highlighting compounds that contribute to the significance of agarwood oil as a valuable and versatile natural resource. This significance is emphasized by the oil's diverse applications and distinctive chemical composition.
Project description:Rakı is a traditional and Protected Designation of Origin (PDO) alcoholic beverage that is distilled from grape distillate with Pimpinella anisum L. in copper pot stills in Turkey. This study focused on the development of a sensory lexicon, a sensory wheel, using a consensus approach and the determination of major volatiles by GC-FID/MS for Rakı. A total of 37 Rakı samples representing all producers were used for volatile and sensory evaluation. The experts identified 78 attributes and references for the lexicon. The main attributes were spicy, anise, sweet, resinous, fruity, dry fruit, floral, head&tail aroma and white colour. The Rakı sensory wheel was created to provide a graphical display of its sensory attributes. For validation of the lexicon, 18 samples were evaluated using descriptive analysis. The results were subjected to PCA to examine the relationship of the samples with the defined sensory attributes. The PCA results show that there is a significant relationship between the Rakı categories and sensory terms and flavour intensities. The GC-MS analyses depicted the following major volatile compounds n-propanol, 2-methyl-1-propanol, 2 and 3-methyl-1-butanol, ethyl-acetate, acetal, acetaldehyde, trans-anethol and estragole. The characterization of the product using its most distinctive sensory descriptors are important tool and can be used for the industry, marketing, consumer education and scientists.
Project description:This study introduces a cost-effective and streamlined Pyrolysis Gas Chromatography-Mass Spectrometry (Py-GC/MS) methodology for detecting and quantifying microplastics in tap water, focusing on seven common polymers. Unlike conventional approaches relying on expensive pyrolyzate libraries, this method identifies pyrolysis fragments by matching their m/z values with commercially available mass spectral libraries (Wiley Registry 12th Edition/NIST 2020) and confirms findings using pure polymer standards. Recovery was evaluated using two approaches, demonstrating that analysis of the entire filter provided more accurate results compared to extrapolation from subsections. The method exhibited excellent linearity for all targeted polymers (R² > 0.996) and achieved detection limits as low as 0.01 µg for polystyrene (PS) and up to 2.59 µg for polyethylene (PE). Application to tap water samples revealed consistent detection of PS, ranging from 2.532 to 2.571 ng/L in morning samples and 0.867 to 1.540 ng/L in afternoon samples, with polypropylene and PE below the limit of quantification (<LOQ). This method provides a reliable, efficient, and cost-effective tool for routine laboratory analysis of microplastics in tap water and other environmental matrices.•A 23-minute Py-GC/MS method efficiently quantifies microplastics in tap water.•Cost-effective strategy using commercially available mass spectral libraries.•Accurate quantification with ng/L sensitivity validated by pure polymer standards.