Unknown

Dataset Information

0

Theoretical prediction of silicether: a two-dimensional hyperconjugated disilicon monoxide nanosheet.


ABSTRACT: The gapless feature and air instability greatly hinder the applications of silicene in nanoelectronics. We theoretically design an oxidized derivative of silicene (named silicether) assembled by disilyl ether molecules. Silicether has an indirect band gap of 1.89 eV with a photoresponse in the ultraviolet-visible region. In addition to excellent thermodynamic stability, it is inert towards oxygen molecules. The material shows the hyperconjugation effect, leading to high performances of in-plane stiffness (107.8 N m-1) and electron mobility (6.4 × 103 cm2 V-1 s-1). Moreover, the uniaxial tensile strain can trigger an indirect-direct-indirect band gap transition. We identify Ag(100) as a potential substrate for the adsorption and dehydrogenation of disilyl ether. The moderate reaction barriers of dehydrogenation may provide a good possibility of bottom-up growth of silicether. All these outstanding properties make silicether a promising candidate for silicon-based nanoelectronic devices.

SUBMITTER: Zhu GL 

PROVIDER: S-EPMC9417710 | biostudies-literature | 2020 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Theoretical prediction of silicether: a two-dimensional hyperconjugated disilicon monoxide nanosheet.

Zhu Gui-Lin GL   Ye Xiao-Juan XJ   Liu Chun-Sheng CS   Yan Xiao-Hong XH  

Nanoscale advances 20200515 7


The gapless feature and air instability greatly hinder the applications of silicene in nanoelectronics. We theoretically design an oxidized derivative of silicene (named silicether) assembled by disilyl ether molecules. Silicether has an indirect band gap of 1.89 eV with a photoresponse in the ultraviolet-visible region. In addition to excellent thermodynamic stability, it is inert towards oxygen molecules. The material shows the hyperconjugation effect, leading to high performances of in-plane  ...[more]

Similar Datasets

| S-EPMC11041737 | biostudies-literature
| S-EPMC10459863 | biostudies-literature
| S-EPMC7678926 | biostudies-literature
| S-EPMC9657928 | biostudies-literature
| S-EPMC6566729 | biostudies-literature
| S-EPMC9059940 | biostudies-literature
| S-EPMC8797516 | biostudies-literature
| S-EPMC6113301 | biostudies-literature
| S-EPMC9048386 | biostudies-literature
| S-EPMC5711089 | biostudies-literature