Project description:Glycosylphosphatidylinositols (GPIs) act as membrane anchors of many eukaryotic cell surface proteins. GPIs in various organisms have a common backbone consisting of ethanolamine phosphate (EtNP), three mannoses (Mans), one non-N-acetylated glucosamine, and inositol phospholipid, whose structure is EtNP-6Manα-2Manα-6Manα-4GlNα-6myoinositol-P-lipid. The lipid part is either phosphatidylinositol of diacyl or 1-alkyl-2-acyl form, or inositol phosphoceramide. GPIs are attached to proteins via an amide bond between the C-terminal carboxyl group and an amino group of EtNP. Fatty chains of inositol phospholipids are inserted into the outer leaflet of the plasma membrane. More than 150 different human proteins are GPI anchored, whose functions include enzymes, adhesion molecules, receptors, protease inhibitors, transcytotic transporters, and complement regulators. GPI modification imparts proteins with unique characteristics, such as association with membrane microdomains or rafts, transient homodimerization, release from the membrane by cleavage in the GPI moiety, and apical sorting in polarized cells. GPI anchoring is essential for mammalian embryogenesis, development, neurogenesis, fertilization, and immune system. Mutations in genes involved in remodeling of the GPI lipid moiety cause human diseases characterized by neurological abnormalities. Yeast Saccharomyces cerevisiae has >60 GPI-anchored proteins (GPI-APs). GPI is essential for growth of yeast. In this review, we discuss biosynthesis of GPI-APs in mammalian cells and yeast with emphasis on the lipid moiety.
Project description:We previously reported that glycosylphosphatidylinositol (GPI) biosynthesis is upregulated when endoplasmic reticulum-associated degradation (ERAD) is defective; however, the underlying mechanistic basis remains unclear. Based on a genome-wide CRISPR-Cas9 screen, we show that a widely expressed GPI-anchored protein CD55 precursor and ER-resident ARV1 are involved in upregulation of GPI biosynthesis under ERAD-deficient conditions. In cells defective in GPI transamidase, GPI-anchored protein precursors fail to obtain GPI, with the remaining uncleaved GPI-attachment signal at the C-termini. We show that ERAD deficiency causes accumulation of the CD55 precursor, which in turn upregulates GPI biosynthesis, where the GPI-attachment signal peptide is the active element. Among the 31 GPI-anchored proteins tested, only the GPI-attachment signal peptides of CD55, CD48, and PLET1 enhance GPI biosynthesis. ARV1 is prerequisite for the GPI upregulation by CD55 precursor. Our data indicate that GPI biosynthesis is balanced to need by ARV1 and precursors of specific GPI-anchored proteins.
Project description:At least 150 human proteins are glycosylphosphatidylinositol-anchored proteins (GPI-APs). The protein moiety of GPI-APs lacking transmembrane domains is anchored to the plasma membrane with GPI covalently attached to the C-terminus. The GPI consists of the conserved core glycan, phosphatidylinositol and glycan side chains. The entire GPI-AP is anchored to the outer leaflet of the lipid bilayer by insertion of fatty chains of phosphatidylinositol. Because of GPI-dependent membrane anchoring, GPI-APs have some unique characteristics. The most prominent feature of GPI-APs is their association with membrane microdomains or membrane rafts. In the polarized cells such as epithelial cells, many GPI-APs are exclusively expressed in the apical surfaces, whereas some GPI-APs are preferentially expressed in the basolateral surfaces. Several GPI-APs act as transcytotic transporters carrying their ligands from one compartment to another. Some GPI-APs are shed from the membrane after cleavage within the GPI by a GPI-specific phospholipase or a glycosidase. In this review, I will summarize the current understanding of GPI-AP biosynthesis in mammalian cells and discuss examples of GPI-dependent functions of mammalian GPI-APs.
Project description:Ly6/uPAR proteins regulate many essential functions in the nervous and immune systems and epithelium. Most of these proteins contain single β-structural LU domains with three protruding loops and are glycosylphosphatidylinositol (GPI)-anchored to a membrane. The GPI-anchor role is currently poorly studied. Here, we investigated the positional and orientational preferences of six GPI-anchored proteins in the receptor-unbound state by molecular dynamics simulations. Regardless of the linker length between the LU domain and GPI-anchor, the proteins interacted with the membrane by polypeptide parts and N-/O-glycans. Lynx1, Lynx2, Lypd6B, and Ly6H contacted the membrane by the loop regions responsible for interactions with nicotinic acetylcholine receptors, while Lypd6 and CD59 demonstrated unique orientations with accessible receptor-binding sites. Thus, GPI-anchoring does not guarantee an optimal 'pre-orientation' of the LU domain for the receptor interaction.
Project description:Endoplasmic reticulum (ER) quality control mechanisms target terminally misfolded proteins for ER-associated degradation (ERAD). Misfolded glycophosphatidylinositol-anchored proteins (GPI-APs) are, however, generally poor ERAD substrates and are targeted mainly to the vacuole/lysosome for degradation, leading to predictions that a GPI anchor sterically obstructs ERAD. Here we analyzed the degradation of the misfolded GPI-AP Gas1* in yeast. We could efficiently route Gas1* to Hrd1-dependent ERAD and provide evidence that it contains a GPI anchor, ruling out that a GPI anchor obstructs ERAD. Instead, we show that the normally decreased susceptibility of Gas1* to ERAD is caused by canonical remodeling of its GPI anchor, which occurs in all GPI-APs and provides a protein-independent ER export signal. Thus, GPI anchor remodeling is independent of protein folding and leads to efficient ER export of even misfolded species. Our data imply that ER quality control is limited for the entire class of GPI-APs, many of them being clinically relevant.
Project description:Tissue inhibitor of metalloproteinase 1 (TIMP-1) controls matrix metalloproteinase (MMP) activity through 1:1 stochiometric binding. Human TIMP-1 fused to a glycosylphosphatidylinositol (GPI) anchor (TIMP-1-GPI) shifts the activity of TIMP-1 from the extracellular matrix to the cell surface. TIMP-1-GPI treated renal cell carcinoma cells (RCC) show increased apoptosis and reduced proliferation. Transcriptomic profiling and regulatory pathway mapping were used to identify potential mechanisms driving these effects. Significant changes in inhibitor of DNA binding (IDs), TGF-β1/SMAD and BMP pathways resulted from TIMP-1-GPI treatment. These events were linked to reduced TGF-β1 signaling mediated by inhibition of proteolytic processing of latent TGF-β1 by TIMP-1-GPI. Activity of TIMP-1 from the extracellular matrix to the cell surface. TIMP-1-GPI treated renal cell carcinoma cells (RCC) show increased apoptosis and reduced proliferation. Transcriptomic profiling and regulatory pathway mapping were used to identify potential mechanisms driving these effects. Significant changes in inhibitor of DNA binding (IDs), TGF-β1/SMAD and BMP pathways resulted from TIMP-1-GPI treatment. These events were linked to reduced TGF-β1 signaling mediated by inhibition of proteolytic processing of latent TGF-β1 by TIMP-1-GPI. Renal cell carcinoma cells were transfected with empty vector, rhTimp1 and 2 concentrations of Timp1-GPI fusion protein
Project description:Glycosylphosphatidylinositol (GPI) anchorage of proteins and glycoproteins onto the cell surface is ubiquitous in eukaryotes, and GPI-anchored proteins and glycoproteins play an important role in many biological processes. To study GPI anchorage and explore the functions of GPIs and GPI-anchored proteins and glycoproteins, it is essential to have access to these molecules in homogeneous and structurally defined forms. This review is focused on the progress that our laboratory has made towards the chemical and chemoenzymatic synthesis of structurally defined GPI anchors and GPI-anchored peptides, glycopeptides, and proteins. Briefly, highly convergent strategies were developed for GPI synthesis and were employed to successfully synthesize a number of GPIs, including those carrying unsaturated lipids and other useful functionalities such as the azido and alkynyl groups. The latter enabled further site-specific modification of GPIs by click chemistry. GPI-linked peptides, glycopeptides, and proteins were prepared by regioselective chemical coupling of properly protected GPIs and peptides/glycopeptides or through site-specific ligation of synthetic GPIs and peptides/glycopeptides/proteins under the influence of sortase A. The investigation of interactions between GPI anchors and pore-forming bacterial toxins by means of synthetic GPI anchors and GPI analogs is also discussed.
Project description:Glycosylphosphatidylinositol (GPI) anchoring of proteins is a posttranslational modification occurring in the endoplasmic reticulum (ER). After GPI attachment, proteins are transported by coat protein complex II (COPII)-coated vesicles from the ER. Because GPI-anchored proteins (GPI-APs) are localized in the lumen, they cannot interact with cytosolic COPII components directly. Receptors that link GPI-APs to COPII are thought to be involved in efficient packaging of GPI-APs into vesicles; however, mechanisms of GPI-AP sorting are not well understood. Here we describe two remodeling reactions for GPI anchors, mediated by PGAP1 and PGAP5, which were required for sorting of GPI-APs to ER exit sites. The p24 family of proteins recognized the remodeled GPI-APs and sorted them into COPII vesicles. Association of p24 proteins with GPI-APs was pH dependent, which suggests that they bind in the ER and dissociate in post-ER acidic compartments. Our results indicate that p24 complexes act as cargo receptors for correctly remodeled GPI-APs to be sorted into COPII vesicles.
Project description:Glycosylphosphatidylinositol (GPI) anchoring of proteins is a posttranslational modification occurring in the endoplasmic reticulum (ER). After GPI attachment, proteins are transported by coat protein complex II (COPII)-coated vesicles from the ER. Because GPI-anchored proteins (GPI-APs) are localized in the lumen, they cannot interact with cytosolic COPII components directly. Receptors that link GPI-APs to COPII are thought to be involved in efficient packaging of GPI-APs into vesicles; however, mechanisms of GPI-AP sorting are not well understood. Here we describe two remodeling reactions for GPI anchors, mediated by PGAP1 and PGAP5, which were required for sorting of GPI-APs to ER exit sites. The p24 family of proteins recognized the remodeled GPI-APs and sorted them into COPII vesicles. Association of p24 proteins with GPI-APs was pH dependent, which suggests that they bind in the ER and dissociate in post-ER acidic compartments. Our results indicate that p24 complexes act as cargo receptors for correctly remodeled GPI-APs to be sorted into COPII vesicles.
Project description:PGAP6, also known as TMEM8A, is a phospholipase A2 with specificity to glycosylphosphatidylinositol (GPI) and expressed on the surface of various cells. CRIPTO, a GPI-anchored co-receptor for a morphogenic factor Nodal, is a sensitive substrate of PGAP6. PGAP6-mediated shedding of CRIPTO plays a critical role in an early stage of embryogenesis. In contrast, CRYPTIC, a close family member of CRIPTO, is resistant to PGAP6. In this report, chimeras between CRIPTO and CRYPTIC and truncate mutants of PGAP6 were used to demonstrate that the Cripto-1/FRL1/Cryptic domain of CRIPTO is recognized by an N-terminal domain of PGAP6 for processing. We also report that among 56 human GPI-anchored proteins tested, only glypican 3, prostasin, SPACA4, and contactin-1, in addition to CRIPTO, are sensitive to PGAP6, indicating that PGAP6 has a narrow specificity toward various GPI-anchored proteins.