Unknown

Dataset Information

0

Deconvoluting complex correlates of COVID-19 severity with a multi-omic pandemic tracking strategy.


ABSTRACT: The SARS-CoV-2 pandemic has differentially impacted populations across race and ethnicity. A multi-omic approach represents a powerful tool to examine risk across multi-ancestry genomes. We leverage a pandemic tracking strategy in which we sequence viral and host genomes and transcriptomes from nasopharyngeal swabs of 1049 individuals (736 SARS-CoV-2 positive and 313 SARS-CoV-2 negative) and integrate them with digital phenotypes from electronic health records from a diverse catchment area in Northern California. Genome-wide association disaggregated by admixture mapping reveals novel COVID-19-severity-associated regions containing previously reported markers of neurologic, pulmonary and viral disease susceptibility. Phylodynamic tracking of consensus viral genomes reveals no association with disease severity or inferred ancestry. Summary data from multiomic investigation reveals metagenomic and HLA associations with severe COVID-19. The wealth of data available from residual nasopharyngeal swabs in combination with clinical data abstracted automatically at scale highlights a powerful strategy for pandemic tracking, and reveals distinct epidemiologic, genetic, and biological associations for those at the highest risk.

SUBMITTER: Parikh VN 

PROVIDER: S-EPMC9426371 | biostudies-literature | 2022 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Deconvoluting complex correlates of COVID-19 severity with a multi-omic pandemic tracking strategy.

Parikh Victoria N VN   Ioannidis Alexander G AG   Jimenez-Morales David D   Gorzynski John E JE   De Jong Hannah N HN   Liu Xiran X   Roque Jonasel J   Cepeda-Espinoza Victoria P VP   Osoegawa Kazutoyo K   Hughes Chris C   Sutton Shirley C SC   Youlton Nathan N   Joshi Ruchi R   Amar David D   Tanigawa Yosuke Y   Russo Douglas D   Wong Justin J   Lauzon Jessie T JT   Edelson Jacob J   Mas Montserrat Daniel D   Kwon Yongchan Y   Rubinacci Simone S   Delaneau Olivier O   Cappello Lorenzo L   Kim Jaehee J   Shoura Massa J MJ   Raja Archana N AN   Watson Nathaniel N   Hammond Nathan N   Spiteri Elizabeth E   Mallempati Kalyan C KC   Montero-Martín Gonzalo G   Christle Jeffrey J   Kim Jennifer J   Kirillova Anna A   Seo Kinya K   Huang Yong Y   Zhao Chunli C   Moreno-Grau Sonia S   Hershman Steven G SG   Dalton Karen P KP   Zhen Jimmy J   Kamm Jack J   Bhatt Karan D KD   Isakova Alina A   Morri Maurizio M   Ranganath Thanmayi T   Blish Catherine A CA   Rogers Angela J AJ   Nadeau Kari K   Yang Samuel S   Blomkalns Andra A   O'Hara Ruth R   Neff Norma F NF   DeBoever Christopher C   Szalma Sándor S   Wheeler Matthew T MT   Gates Christian M CM   Farh Kyle K   Schroth Gary P GP   Febbo Phil P   deSouza Francis F   Cornejo Omar E OE   Fernandez-Vina Marcelo M   Kistler Amy A   Palacios Julia A JA   Pinsky Benjamin A BA   Bustamante Carlos D CD   Rivas Manuel A MA   Ashley Euan A EA  

Nature communications 20220830 1


The SARS-CoV-2 pandemic has differentially impacted populations across race and ethnicity. A multi-omic approach represents a powerful tool to examine risk across multi-ancestry genomes. We leverage a pandemic tracking strategy in which we sequence viral and host genomes and transcriptomes from nasopharyngeal swabs of 1049 individuals (736 SARS-CoV-2 positive and 313 SARS-CoV-2 negative) and integrate them with digital phenotypes from electronic health records from a diverse catchment area in No  ...[more]

Similar Datasets

2020-08-29 | GSE157103 | GEO
| S-EPMC7543711 | biostudies-literature
| S-EPMC7388490 | biostudies-literature
| S-EPMC9038205 | biostudies-literature
2020-07-08 | MSV000085703 | MassIVE
| PRJNA660067 | ENA
| S-EPMC10203880 | biostudies-literature
| S-EPMC10388828 | biostudies-literature
| S-EPMC9915637 | biostudies-literature
| S-EPMC8548281 | biostudies-literature