Project description:Multiple myeloma (MM) is a plasma cell malignancy with a significant heritable basis. Genome-wide association studies have transformed our understanding of MM predisposition, but individual studies have had limited power to discover risk loci. Here we perform a meta-analysis of these GWAS, add a new GWAS and perform replication analyses resulting in 9,866 cases and 239,188 controls. We confirm all nine known risk loci and discover eight new loci at 6p22.3 (rs34229995, P=1.31 × 10(-8)), 6q21 (rs9372120, P=9.09 × 10(-15)), 7q36.1 (rs7781265, P=9.71 × 10(-9)), 8q24.21 (rs1948915, P=4.20 × 10(-11)), 9p21.3 (rs2811710, P=1.72 × 10(-13)), 10p12.1 (rs2790457, P=1.77 × 10(-8)), 16q23.1 (rs7193541, P=5.00 × 10(-12)) and 20q13.13 (rs6066835, P=1.36 × 10(-13)), which localize in or near to JARID2, ATG5, SMARCD3, CCAT1, CDKN2A, WAC, RFWD3 and PREX1. These findings provide additional support for a polygenic model of MM and insight into the biological basis of tumour development.
Project description:Genome-wide association studies (GWAS) have transformed our understanding of susceptibility to multiple myeloma (MM), but much of the heritability remains unexplained. We report a new GWAS, a meta-analysis with previous GWAS and a replication series, totalling 9974 MM cases and 247,556 controls of European ancestry. Collectively, these data provide evidence for six new MM risk loci, bringing the total number to 23. Integration of information from gene expression, epigenetic profiling and in situ Hi-C data for the 23 risk loci implicate disruption of developmental transcriptional regulators as a basis of MM susceptibility, compatible with altered B-cell differentiation as a key mechanism. Dysregulation of autophagy/apoptosis and cell cycle signalling feature as recurrently perturbed pathways. Our findings provide further insight into the biological basis of MM.
Project description:BackgroundTERT encodes the telomerase reverse transcriptase, which is responsible for maintaining telomere ends by addition of (TTAGGG) n nucleotide repeats at the telomere. Recent genome-wide association studies have found common genetic variants at the TERT-CLPTM1L locus (5p15.33) associated with an increased risk of several cancers. ResultsData were acquired for 1627 variants in 1092 unrelated individuals from 14 populations within the 1000 Genomes Project. We assessed the population genetics of the 5p15.33 region, including recombination hotspots, diversity, heterozygosity, differentiation among populations, and potential functional impacts. There were significantly lower polymorphism rates, divergence, and heterozygosity for the coding variants, particularly for non-synonymous sites, compared with non-coding and silent changes. Many of the cancer-associated SNPs had differing genotype frequencies among ancestral groups and were associated with potential regulatory changes. ConclusionsSurrogate SNPs in linkage disequilibrium with the majority of cancer-associated SNPs were functional variants with a likely role in regulation of TERT and/or CLPTM1L. Our findings highlight several SNPs that future studies should prioritize for evaluation of functional consequences.
Project description:Multiple myeloma (MM) patients with suboptimal response to induction therapy or early relapse, classified as the functional high-risk (FHR) patients, have been shown to have poor outcomes. We evaluated newly-diagnosed MM patients in the CoMMpass dataset and divided them into three groups: genomic high-risk (GHR) group for patients with t(4;14) or t(14;16) or complete loss of functional TP53 (bi-allelic deletion of TP53 or mono-allelic deletion of 17p13 (del17p13) and TP53 mutation) or 1q21 gain and International Staging System (ISS) stage 3; FHR group for patients who had no markers of GHR group but were refractory to induction therapy or had early relapse within 12 months; and standard-risk (SR) group for patients who did not fulfill any of the criteria for GHR or FHR. FHR patients had the worst survival. FHR patients are characterized by increased mutations affecting the IL-6/JAK/STAT3 pathway, and a gene expression profile associated with aberrant mitosis and DNA damage response. This is also corroborated by the association with the mutational signature associated with abnormal DNA damage response. We have also developed a machine learning based classifier that can identify most of these patients at diagnosis.
Project description:Multiple myeloma (MM) arises following malignant proliferation of plasma cells in the bone marrow, that secrete high amounts of specific monoclonal immunoglobulins or light chains, resulting in the massive production of unfolded or misfolded proteins. Autophagy can have a dual role in tumorigenesis, by eliminating these abnormal proteins to avoid cancer development, but also ensuring MM cell survival and promoting resistance to treatments. To date no studies have determined the impact of genetic variation in autophagy-related genes on MM risk. We performed meta-analysis of germline genetic data on 234 autophagy-related genes from three independent study populations including 13,387 subjects of European ancestry (6863 MM patients and 6524 controls) and examined correlations of statistically significant single nucleotide polymorphisms (SNPs; p < 1 × 10-9) with immune responses in whole blood, peripheral blood mononuclear cells (PBMCs), and monocyte-derived macrophages (MDM) from a large population of healthy donors from the Human Functional Genomic Project (HFGP). We identified SNPs in six loci, CD46, IKBKE, PARK2, ULK4, ATG5, and CDKN2A associated with MM risk (p = 4.47 × 10-4-5.79 × 10-14). Mechanistically, we found that the ULK4rs6599175 SNP correlated with circulating concentrations of vitamin D3 (p = 4.0 × 10-4), whereas the IKBKErs17433804 SNP correlated with the number of transitional CD24+CD38+ B cells (p = 4.8 × 10-4) and circulating serum concentrations of Monocyte Chemoattractant Protein (MCP)-2 (p = 3.6 × 10-4). We also found that the CD46rs1142469 SNP correlated with numbers of CD19+ B cells, CD19+CD3- B cells, CD5+IgD- cells, IgM- cells, IgD-IgM- cells, and CD4-CD8- PBMCs (p = 4.9 × 10-4-8.6 × 10-4) and circulating concentrations of interleukin (IL)-20 (p = 0.00082). Finally, we observed that the CDKN2Ars2811710 SNP correlated with levels of CD4+EMCD45RO+CD27- cells (p = 9.3 × 10-4). These results suggest that genetic variants within these six loci influence MM risk through the modulation of specific subsets of immune cells, as well as vitamin D3-, MCP-2-, and IL20-dependent pathways.
Project description:The metabolism of xenobiotics is regulated by phase I and II enzymes, and by transporters encoded by the absorption, distribution, metabolism, and excretion (ADME) genes. It is known that the activity of these proteins is influenced by the presence of polymorphic variants in the corresponding gene that can account for the inter-individual variability in both xenobiotic response/toxicity and disease predisposition. Exposure to pesticides and toxic substances, many of which are substrates of ADME-associated proteins, has been demonstrated to increase the risk of Multiple Myeloma (MM). To investigate the inter-individual variability of ADME genes as a risk factor for MM risk, we compared DMET Plus genotyping data from 65 MM patients with 59 CEU Hapmap controls (GPL17860).
Project description:BackgroundMultiple myeloma (MM) is a hematologic malignancy characterized by the accumulation of aberrant plasma cells within the bone marrow. The high frequent mutation of family with sequence similarity 46, member C (FAM46C) is closely related with the occurrence and progression of MM. Recently, FAM46C has been identified as a non-canonical poly(A) polymerase (PAP) that functions as a tumor suppressor in MM. This study aimed to elucidate the structural features of this novel non-canonical PAP and how MM-related mutations affect the structural and biochemical properties of FAM46C, eventually advancing our understandings towards FAM46C mutation-related MM occurrence.MethodsWe purified and crystallized a mammalian FAM46C construct, and solved its structure. Next, we characterized the property of FAM46C as a PAP through a combination of structural analysis, site-directed mutagenesis and biochemical assays, and by comparison with its homolog FAM46B. Finally, we structurally analyzed MM-related FAM46C mutations and tested the enzymatic activity of corresponding mutants.ResultsWe determined the crystal structure of a mammalian FAM46C protein at 2.35 Å, and confirmed that FAM46C preferentially consumed adenosine triphosphate (ATP) and extended A-rich RNA substrates. FAM46C showed a weaker PAP activity than its homolog FAM46B, and this difference was largely dependent on the residue variance at particular sites. Of them, residues at positions 77, 290, and 298 of mouse FAM46C were most important for the divergence in enzymatic activity. Among the MM-associated FAM46C mutants, those residing at the catalytic site (D90G and D90H) or putative RNA-binding site (I155L, S156F, D182Y, F184L, Y247V, and M270V) showed abolished or compromised PAP activity of FAM46C, while N72A and S248A did not severely affect the PAP activity. FAM46C mutants D90G, D90H, I155L, S156F, F184L, Y247V, and M270V had significantly lower inhibitory effect on apoptosis of RPMI-8226 cells as compared to wild-type FAM46C.ConclusionsFAM46C is a prokaryotic-like PAP with preference for A-rich RNA substrates, and showed distinct enzymatic efficiency with its homolog FAM46B. The MM-related missense mutations of FAM46C lead to various structural and biochemical outcomes to the protein.
Project description:Inherited genetic risk factors play a role in multiple myeloma (MM), yet considerable missing heritability exists. Rare risk variants at genome-wide association study (GWAS) loci are a new avenue to explore. Pleiotropy between lymphoid neoplasms (LNs) has been suggested in family history and genetic studies, but no studies have interrogated sequencing for pleiotropic genes or rare risk variants. Sequencing genetically enriched cases can help discover rarer variants. We analyzed exome sequencing in familial or early-onset MM cases to identify rare, functionally relevant variants near GWAS loci for a range of LNs. A total of 149 distinct and significant LN GWAS loci have been published. We identified six recurrent, rare, potentially deleterious variants within 5 kb of significant GWAS single nucleotide polymorphisms in 75 MM cases. Mutations were observed in BTNL2, EOMES, TNFRSF13B, IRF8, ACOXL and TSPAN32. All six genes replicated in an independent set of 255 early-onset MM or familial MM or precursor cases. Expansion of our analyses to the full length of these six genes resulted in a list of 39 rare and deleterious variants, seven of which segregated in MM families. Three genes also had significant rare variant burden in 733 sporadic MM cases compared with 935 control individuals: IRF8 (P = 1.0 × 10-6), EOMES (P = 6.0 × 10-6) and BTNL2 (P = 2.1 × 10-3). Together, our results implicate six genes in MM risk, provide support for genetic pleiotropy between LN subtypes and demonstrate the utility of sequencing genetically enriched cases to identify functionally relevant variants near GWAS loci.
Project description:Multiple myeloma is a haematological malignency, characterized by clonal expansion of plasma cells. However, little is known about the cause of multiple myeloma. Cancer cells must avoid apoptosis to ensure unregulated tumour formation and growth. The highly conserved caspase cascade is essential to the regulation of the apoptotic pathway. To examine if five single nucleotide polymorphisms (SNPs) in four caspase genes [CASP3 Ex8-280 C > A (rs6948), CASP3 Ex8 + 567 T > C (rs1049216), CASP8 Ex14-271 A > T (rs13113), CASP9 Ex5 + 32 G > A (rs1052576), CASP10 Ex3-171 A > G (rs39001150)] alter multiple myeloma risk, we conducted a population-based case-control study of women (128 cases; 516 controls) in Connecticut. Compared to individuals with the TT genotype of CASP3 Ex8 + 567 T > C, subjects with the CC genotype had a five-fold decreased risk of multiple myeloma (odds ratio (OR)(CC) = 0.2, 95% confidence interval (CI) = 0.0-1.0). Further, individuals with the AG and AA genotypes of CASP9 Ex5 + 32 G > A also experienced a decreased risk of multiple myeloma (OR(AG) = 0.8, 95% CI = 0.5-1.3; OR(AA) = 0.5, 95% CI = 0.3-0.9; p-trend = 0.02). While no previous study has evaluated the association between caspase genes and multiple myeloma, studies have found associations with lung, breast, esophageal, gastric, colorectal and cervical cancers. Our parallel study of non-Hodgkin lymphoma, which utilized the same controls, found strong evidence that caspase genes play a key role in lymphogenesis. The protective associations observed in two key caspase genes suggest that genetic variation in CASP genes may play an important role in the aetiology of multiple myeloma.