CORRECTION TO: "PARAMETRIC-REGRESSION-BASED CAUSAL MEDIATION ANALYSIS OF BINARY OUTCOMES AND BINARY MEDIATORS: MOVING BEYOND THE RARENESS OR COMMONNESS OF THE OUTCOME".
CORRECTION TO: "PARAMETRIC-REGRESSION-BASED CAUSAL MEDIATION ANALYSIS OF BINARY OUTCOMES AND BINARY MEDIATORS: MOVING BEYOND THE RARENESS OR COMMONNESS OF THE OUTCOME".
Project description:In the causal mediation framework, several parametric-regression-based approaches have been introduced in the last decade for estimating natural direct and indirect effects. For a binary outcome, a number of proposed estimators use a logistic model and rely on specific assumptions or approximations that may be delicate or not easy to verify in practice. To circumvent the challenges prompted by the rare outcome assumption in this context, an exact closed-form natural-effects estimator on the odds ratio scale was recently introduced for a binary mediator. In this work, we further push this exact approach and extend it for the estimation of natural effects on the risk ratio and risk difference scales. Explicit formulas for the delta method standard errors are provided. The performance of our proposed exact estimators is demonstrated in simulation scenarios featuring various levels of outcome rareness/commonness. The total effect decomposition property on the multiplicative scales is also examined. Using a SAS macro (SAS Institute, Inc., Cary, North Carolina) we developed, our approach is illustrated to assess the separate effects of exposure to inhaled corticosteroids and placental abruption on low birth weight mediated by prematurity. Our exact natural-effects estimators are found to work properly in both simulations and the real data example.
Project description:In diverse fields of empirical research-including many in the biological sciences-attempts are made to decompose the effect of an exposure on an outcome into its effects via a number of different pathways. For example, we may wish to separate the effect of heavy alcohol consumption on systolic blood pressure (SBP) into effects via body mass index (BMI), via gamma-glutamyl transpeptidase (GGT), and via other pathways. Much progress has been made, mainly due to contributions from the field of causal inference, in understanding the precise nature of statistical estimands that capture such intuitive effects, the assumptions under which they can be identified, and statistical methods for doing so. These contributions have focused almost entirely on settings with a single mediator, or a set of mediators considered en bloc; in many applications, however, researchers attempt a much more ambitious decomposition into numerous path-specific effects through many mediators. In this article, we give counterfactual definitions of such path-specific estimands in settings with multiple mediators, when earlier mediators may affect later ones, showing that there are many ways in which decomposition can be done. We discuss the strong assumptions under which the effects are identified, suggesting a sensitivity analysis approach when a particular subset of the assumptions cannot be justified. These ideas are illustrated using data on alcohol consumption, SBP, BMI, and GGT from the Izhevsk Family Study. We aim to bridge the gap from "single mediator theory" to "multiple mediator practice," highlighting the ambitious nature of this endeavor and giving practical suggestions on how to proceed.
Project description:Causal mediation analysis uses a potential outcomes framework to estimate the direct effect of an exposure on an outcome and its indirect effect through an intermediate variable (or mediator). Causal interpretations of these effects typically rely on sequential ignorability. Because this assumption is not empirically testable, it is important to conduct sensitivity analyses. Sensitivity analyses so far offered for this situation have either focused on the case where the outcome follows a linear model or involve nonparametric or semiparametric models. We propose alternative approaches that are suitable for responses following generalized linear models. The first approach uses a Gaussian copula model involving latent versions of the mediator and the final outcome. The second approach uses a so-called hybrid causal-observational model that extends the association model for the final outcome, providing a novel sensitivity parameter. These models, while still assuming a randomized exposure, allow for unobserved (as well as observed) mediator-outcome confounders that are not affected by exposure. The methods are applied to data from a study of the effect of mother education on dental caries in adolescence.
Project description:Causal mediation analysis provides investigators insight into how a treatment or exposure can affect an outcome of interest through one or more mediators on causal pathway. When multiple mediators on the pathway are causally ordered, identification of mediation effects on certain causal pathways requires a sensitivity parameter to be specified. A mixed model-based approach was proposed in the Bayesian framework to connect potential outcomes at different treatment levels, and identify mediation effects independent of a sensitivity parameter, for the natural direct and indirect effects on all causal pathways. The proposed method is illustrated in a linear setting for mediators and outcome, with mediator-treatment interactions. Sensitivity analysis was performed for the prior choices in the Bayesian models. The proposed Bayesian method was applied to an adolescent dental health study, to see how social economic status can affect dental caries through a sequence of causally ordered mediators in dental visit and oral hygiene index.
Project description:Greater understanding of the pathways through which an environmental mixture operates is important to design effective interventions. We present new methodology to estimate natural direct and indirect effects and controlled direct effects of a complex mixture exposure on an outcome through a mediator variable. We implement Bayesian Kernel Machine Regression (BKMR) to allow for all possible interactions and nonlinear effects of (1) the co-exposures on the mediator, (2) the co-exposures and mediator on the outcome, and (3) selected covariates on the mediator and/or outcome. From the posterior predictive distributions of the mediator and outcome, we simulate counterfactuals to obtain posterior samples, estimates, and credible intervals of the mediation effects. Our simulation study demonstrates that when the exposure-mediator and exposure-mediator-outcome relationships are complex, BKMR-Causal Mediation Analysis performs better than current mediation methods. We applied our methodology to quantify the contribution of birth length as a mediator between in utero co-exposure to arsenic, manganese, and lead, and children's neurodevelopmental scores, in a prospective birth cohort in Bangladesh. Among younger children, we found a negative (adverse) association between the metal mixture and neurodevelopment. We also found evidence that birth length mediates the effect of exposure to the metal mixture on neurodevelopment for younger children. If birth length were fixed to its 75th percentile value, the harmful effect of the metal mixture on neurodevelopment is attenuated, suggesting nutritional interventions to help increase fetal growth, and thus birth length, could potentially block the harmful effect of the metal mixture on neurodevelopment.
Project description:We investigate a method to estimate the combined effect of multiple continuous/ordinal mediators on a binary outcome: 1) fit a structural equation model with probit link for the outcome and identity/probit link for continuous/ordinal mediators, 2) predict potential outcome probabilities, and 3) compute natural direct and indirect effects. Step 2 involves rescaling the latent continuous variable underlying the outcome to address residual mediator variance/covariance. We evaluate the estimation of risk-difference- and risk-ratio-based effects (RDs, RRs) using the ML, WLSMV and Bayes estimators in Mplus. Across most variations in path-coefficient and mediator-residual-correlation signs and strengths, and confounding situations investigated, the method performs well with all estimators, but favors ML/WLSMV for RDs with continuous mediators, and Bayes for RRs with ordinal mediators. Bayes outperforms WLSMV/ML regardless of mediator type when estimating RRs with small potential outcome probabilities and in two other special cases. An adolescent alcohol prevention study is used for illustration.
Project description:BackgroundMediation analyses have been a popular approach to investigate the effect of an exposure on an outcome through a mediator. Mediation models with multiple mediators have been proposed for continuous and dichotomous outcomes. However, development of multimediator models for survival outcomes is still limited.MethodsWe present methods for multimediator analyses using three survival models: Aalen additive hazard models, Cox proportional hazard models, and semiparametric probit models. Effects through mediators can be characterized by path-specific effects, for which definitions and identifiability assumptions are provided. We derive closed-form expressions for path-specific effects for the three models, which are intuitively interpreted using a causal diagram.ResultsMediation analyses using Cox models under the rare-outcome assumption and Aalen additive hazard models consider effects on log hazard ratio and hazard difference, respectively; analyses using semiparametric probit models consider effects on difference in transformed survival time and survival probability. The three models were applied to a hepatitis study where we investigated effects of hepatitis C on liver cancer incidence mediated through baseline and/or follow-up hepatitis B viral load. The three methods show consistent results on respective effect scales, which suggest an adverse estimated effect of hepatitis C on liver cancer not mediated through hepatitis B, and a protective estimated effect mediated through the baseline (and possibly follow-up) of hepatitis B viral load.ConclusionsCausal mediation analyses of survival outcome with multiple mediators are developed for additive hazard and proportional hazard and probit models with utility demonstrated in a hepatitis study.
Project description:Often linear regression is used to perform mediation analysis. However, in many instances, the underlying relationships may not be linear, as in the case of placentalfetal hormones and fetal development. Although, the exact functional form of the relationship may be unknown, one may hypothesize the general shape of the relationship. For these reasons, we develop a novel shape-restricted inference-based methodology for conducting mediation analysis. This work is motivated by an application in fetal endocrinology where researchers are interested in understanding the effects of pesticide application on birth weight, with human chorionic gonadotropin (hCG) as the mediator. We assume a practically plausible set of nonlinear effects of hCG on the birth weight and a linear relationship between pesticide exposure and hCG, with both exposure-outcome and exposure-mediator models being linear in the confounding factors. Using the proposed methodology on a population-level prenatal screening program data, with hCG as the mediator, we discovered that, while the natural direct effects suggest a positive association between pesticide application and birth weight, the natural indirect effects were negative.
Project description:Mediation analysis, which started in the mid-1980s, is used extensively by applied researchers. Indirect and direct effects are the part of a treatment effect that is mediated by a covariate and the part that is not. Subsequent work on natural indirect and direct effects provides a formal causal interpretation, based on cross-worlds counterfactuals: outcomes under treatment with the mediator set to its value without treatment. Organic indirect and direct effects avoid cross-worlds counterfactuals, using so-called organic interventions on the mediator while keeping the initial treatment fixed at treatment. Organic indirect and direct effects apply also to settings where the mediator cannot be set. In linear models where the outcome model does not have treatment-mediator interaction, both organic and natural indirect and direct effects lead to the same estimators as in the original formulation of mediation analysis. Here, we generalize organic interventions on the mediator to include interventions combined with the initial treatment fixed at no treatment. We show that the product method holds in linear models for organic indirect and direct effects relative to no treatment even if there is treatment-mediator interaction. Moreover, we find a product method for binary mediators. Furthermore, we argue that the organic indirect effect relative to no treatment is very relevant for drug development. We illustrate the benefits of our approach by estimating the organic indirect effect of curative HIV treatments mediated by two HIV persistence measures, using data on interruption of antiretroviral therapy without curative HIV treatments combined with an estimated or hypothesized effect of the curative HIV treatments on these mediators. See video abstract at http://links.lww.com/EDE/B796.
Project description:Mediation analyses play important roles in making causal inference in biomedical research to examine causal pathways that may be mediated by one or more intermediate variables (ie, mediators). Although mediation frameworks have been well established such as counterfactual-outcomes (ie, potential-outcomes) models and traditional linear mediation models, little effort has been devoted to dealing with mediators with zero-inflated structures due to challenges associated with excessive zeros. We develop a novel mediation modeling approach to address zero-inflated mediators containing true zeros and false zeros. The new approach can decompose the total mediation effect into two components induced by zero-inflated structures: the first component is attributable to the change in the mediator on its numerical scale which is a sum of two causal pathways and the second component is attributable only to its binary change from zero to a non-zero status. An extensive simulation study is conducted to assess the performance and it shows that the proposed approach outperforms existing standard causal mediation analysis approaches. We also showcase the application of the proposed approach to a real study in comparison with a standard causal mediation analysis approach.