Project description:The novel coronavirus disease 2019 (COVID-19) emerged in late December 2019 in china and has rapidly spread to many countries around the world. The effective pharmacotherapy can reduce the mortality of COVID-19. Antiviral medications are the candidate therapies for the management of COVID-19. Molnupiravir is an antiviral drug with anti-RNA polymerase activity and currently is under investigation for the treatment of patients with COVID-19. This review focuses on summarizing published literature for the mechanism of action, safety, efficacy, and clinical trials of molnupiravir in the treatment of COVID-19 patients.
Project description:BackgroundNew treatments are needed to reduce the risk of progression of coronavirus disease 2019 (Covid-19). Molnupiravir is an oral, small-molecule antiviral prodrug that is active against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).MethodsWe conducted a phase 3, double-blind, randomized, placebo-controlled trial to evaluate the efficacy and safety of treatment with molnupiravir started within 5 days after the onset of signs or symptoms in nonhospitalized, unvaccinated adults with mild-to-moderate, laboratory-confirmed Covid-19 and at least one risk factor for severe Covid-19 illness. Participants in the trial were randomly assigned to receive 800 mg of molnupiravir or placebo twice daily for 5 days. The primary efficacy end point was the incidence hospitalization or death at day 29; the incidence of adverse events was the primary safety end point. A planned interim analysis was performed when 50% of 1550 participants (target enrollment) had been followed through day 29.ResultsA total of 1433 participants underwent randomization; 716 were assigned to receive molnupiravir and 717 to receive placebo. With the exception of an imbalance in sex, baseline characteristics were similar in the two groups. The superiority of molnupiravir was demonstrated at the interim analysis; the risk of hospitalization for any cause or death through day 29 was lower with molnupiravir (28 of 385 participants [7.3%]) than with placebo (53 of 377 [14.1%]) (difference, -6.8 percentage points; 95% confidence interval [CI], -11.3 to -2.4; P = 0.001). In the analysis of all participants who had undergone randomization, the percentage of participants who were hospitalized or died through day 29 was lower in the molnupiravir group than in the placebo group (6.8% [48 of 709] vs. 9.7% [68 of 699]; difference, -3.0 percentage points; 95% CI, -5.9 to -0.1). Results of subgroup analyses were largely consistent with these overall results; in some subgroups, such as patients with evidence of previous SARS-CoV-2 infection, those with low baseline viral load, and those with diabetes, the point estimate for the difference favored placebo. One death was reported in the molnupiravir group and 9 were reported in the placebo group through day 29. Adverse events were reported in 216 of 710 participants (30.4%) in the molnupiravir group and 231 of 701 (33.0%) in the placebo group.ConclusionsEarly treatment with molnupiravir reduced the risk of hospitalization or death in at-risk, unvaccinated adults with Covid-19. (Funded by Merck Sharp and Dohme; MOVe-OUT ClinicalTrials.gov number, NCT04575597.).
Project description:COVID-19, caused by the novel coronavirus SARS-CoV-2, is an abbreviated name for coronavirus disease 2019. COVID-19 became a global pandemic in early 2020. It predominantly affects not only the upper and lower respiratory tract, but also multiple organs, including the kidney, heart, and brain. The mortality of COVID-19 patients is high in men and in elderly patients with age-related diseases such as hypertension and diabetes. The angiotensin converting enzyme-2 (ACE-2), a component in the renin-angiotensin-aldosterone system (RAAS), plays as cell surface receptors for SARS-CoV-2. A recent study proved that coronavirus SARS-CoV-2 also uses dipeptidyl peptidase-4 (DPP4, also known as adenosine deaminase complexing protein 2, CD26) as a co-receptor when entering cells. In addition, DPP4 is also implicated in the regulation of the immune response. Thus, the combination of DPP4 inhibition and suppression of ACE-2/RAAS may be a novel therapeutic strategy for combating this pandemic.
Project description:Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has emerged to cause pandemic respiratory disease in the past 2 years, leading to significant worldwide morbidity and mortality. At the beginning of the pandemic, only nonspecific treatments were available, but recently two oral antivirals have received emergency use authorization from the U.S. Food and Drug Administration for the treatment of mild to moderate coronavirus disease (COVID-19). Molnupiravir targets the viral polymerase and causes lethal mutations within the virus during replication. Nirmatrelvir targets SARS-CoV-2's main protease, and it is combined with ritonavir to delay its metabolism and allow nirmatrelvir to inhibit proteolytic cleavage of viral polyproteins during replication, preventing efficient virus production. Both drugs inhibit in vitro viral replication of all variants tested to date. Each is taken orally twice daily for 5 days. When started in the first 5 days of illness in persons at risk for complications due to COVID-19, molnupiravir and nirmatrelvir/ritonavir significantly decreased severe outcomes (hospitalizations and death) with adjusted relative risk reductions of 30% and 88%, respectively, for the two treatments. Molnupiravir should not be used in children or pregnant persons due to concerns about potential toxicity, and reliable contraception should be used in persons of childbearing potential. Nirmatrelvir/ritonavir may cause significant drug-to-drug interactions that limit its use in persons taking certain medications metabolized by certain cytochrome P450 enzymes. Both treatment regimens are important additions to the management of early COVID-19 in at-risk patients in the outpatient setting.
Project description:During the COVID-19 pandemic, various drug candidates have been developed, molnupiravir (MK-4482 and EIDD-2801), which is a new orally anti-viral agent under development for the treatment of COVID-19, is under study in the final stage of the clinical trial. Molnupiravir enhances the replication of viral RNA mutations in animals and humans. Due to the high demand for the synthesis of this drug, it was essential to develop an efficient and suitable synthetic pathway from raw material. In this study, molecular docking analysis on molnupiravir is examined also, the mechanism of action (MOA) and the recent synthetic pathway is reported. This review will be helpful to different disciplines such as medicinal chemistry, organic chemistry, biochemistry, and pharmacology.
Project description:The COVID-19 pandemic needs no introduction at present. Only a few treatments are available for this disease, including remdesivir and favipiravir. Accordingly, the pharmaceutical industry is striving to develop new treatments for COVID-19. Molnupiravir, an orally active RdRp inhibitor, is in a phase 3 clinical trial against COVID-19. The objective of this review article is to enlighten the researchers working on COVID-19 about the discovery, recent developments, and patents related to molnupiravir. Molnupiravir was originally developed for the treatment of influenza at Emory University, USA. However, this drug has also demonstrated activity against a variety of viruses, including SARS-CoV-2. Now it is being jointly developed by Emory University, Ridgeback Biotherapeutics, and Merck to treat COVID-19. The published clinical data indicate a good safety profile, tolerability, and oral bioavailability of molnupiravir in humans. The patient-compliant oral dosage form of molnupiravir may hit the market in the first or second quarter of 2022. The patent data of molnupiravir revealed its granted compound patent and process-related patent applications. We also anticipate patent filing related to oral dosage forms, inhalers, and a combination of molnupiravir with marketed drugs like remdesivir, favipiravir, and baricitinib. The current pandemic demands a patient compliant, safe, tolerable, and orally effective COVID-19 treatment. The authors believe that molnupiravir meets these requirements and is a breakthrough COVID-19 treatment.
Project description:BackgroundThroughout the time of the global pandemic of SARS-CoV-2 virus, there has been a compelling necessity for the development of effective antiviral agents and prophylactic vaccines to limit the virus spread, disease burden, hospitalization, and mortality. Until mid of 2021, the NIH treatment guideline declared no single oral therapy was proven to treat mild to moderate cases. A new hope arose when a repurposed direct acting oral anti-viral agent "Molnupiravir" was shown to be effective in decreasing mortality and need for hospitalization in mild to moderate cases with relatively good safety profile; exhibiting a significant reduction in virus titers only after two days from administration. Molnupiravir recently granted the FDA emergency use authorization to treat mild to moderate COVID-19 patients with at least one risk factor for progression.MethodsWe performed a computer-based literature search of (PubMed, Science direct, MedRxiv, BioRxiv, ClinicalTrials.gov, ISRCTN, Cochrane COVID study register, EU registry, and CTRI registry) till February 15th, 2022. The following keywords were used in our search ("Molnupiravir", "NHC", "EIDD-2807", "MK-4482" or "EIDD-1931").ResultsWe identified from the initial search a total of 279 articles; 246 articles (BioRxiv and MedRxiv N = 186, PubMed N = 33, Science direct N = 27) and 33 Clinical trials from the following registries (ISCTRN (N = 1), Clinical Trials.gov (N = 6), CTRI (N = 12), Cochrane (N = 14)). Through screening phases, 21 records were removed as duplicates and 198 irrelevant records were also excluded. The included studies in this systematic review were (N = 60) included 39 published papers and 21 clinical trials. After Manual addition (N = 4), the qualitative assessment included (N = 64).ConclusionBased on the cumulative evidence from preclinical and clinical studies, Molnupiravir is proven to be a well tolerated, direct acting oral anti-viral agent to halt the disease progression in mild to moderate COVID-19 cases; in terms of mortality and hospitalization rates.
Project description:This study assessed prevention of relapse in patients with treatment-resistant depression (TRD) taking olanzapine/fluoxetine combination (OFC). Patients with major depressive disorder (MDD) who failed to satisfactorily respond to ≥ 2 different antidepressants for ≥ 6 weeks within the current MDD episode were acutely treated for 6-8 weeks, followed by stabilization (12 weeks) on OFC. Those who remained stable were randomized to OFC or fluoxetine for up to 27 weeks. Time-to-relapse was the primary efficacy outcome defined as 50% increase in Montgomery-Åsberg Depression Rating Scale score with Clinical Global Impressions-Severity of Depression score of ≥ 4; hospitalization for depression or suicidality; or discontinuation for lack of efficacy or worsening of depression or suicidality. A total of 444 patients were randomized 1:1 to OFC (N=221) or fluoxetine (N=223). Time-to-relapse was significantly longer in OFC-treated patients compared with fluoxetine-treated patients (p<0.001). Treatment-emergent weight gain and some mean and categorical fasting metabolic changes were significantly greater in OFC-treated patients. Clinically significant weight gain (≥ 7%) was observed in 55.7% of patients who remained on OFC throughout the study, including the relapse-prevention phase (up to 47 weeks). There were no significant differences between patients treated with OFC and fluoxetine in extrapyramidal symptoms or serious adverse events. We believe this is the first controlled relapse-prevention study in subjects with TRD that supports continued use of a second-generation antipsychotic beyond stabilization. A thorough assessment of benefits and risks (in particular metabolic changes) associated with continuing treatment with OFC or fluoxetine must be done based on individual patient needs.
Project description:The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) constitutes a major worldwide public health threat and economic burden. The pandemic is still ongoing and the SARS-CoV-2 variants are still emerging constantly, resulting in an urgent demand for new drugs to treat this disease. Molnupiravir, a biological prodrug of NHC (β-D-N(4)-hydroxycytidine), is a novel nucleoside analogue with a broad-spectrum antiviral activity against SARS-CoV, SARS-CoV-2, Middle East respiratory syndrome coronavirus (MERS-CoV), influenza virus, respiratory syncytial virus (RSV), bovine viral diarrhea virus (BVDV), hepatitis C virus (HCV) and Ebola virus (EBOV). Molnupiravir showed potent therapeutic and prophylactic activity against multiple coronaviruses including SARS-CoV-2, SARS-CoV, and MERS-CoV in animal models. In clinical trials, molnupiravir showed beneficial effects for mild to moderate COVID-19 patients with a favorable safety profile. The oral bioavailability and potent antiviral activity of molnupiravir highlight its potential utility as a therapeutic candidate against COVID-19. This review presents the research progress of molnupiravir starting with its discovery and synthesis, broad-spectrum antiviral effects, and antiviral mechanism. In addition, the preclinical studies, antiviral resistance, clinical trials, safety, and drug tolerability of molnupiravir are also summarized and discussed, aiming to expand our knowledge on molnupiravir and better deal with the COVID-19 epidemic.
Project description:Background and aimsMolnupiravir is a newer oral antiviral drug that has recently been tested in COVID-19. We aim to conduct a systematic review of literature to find out the efficacy and safety of molnupiravir in patients with COVID-19.MethodsWe systematically searched the electronic database of PubMed, MedRxiv and Google Scholar from inception until October 15, 2021, using MeSH keywords. Ongoing trials of molnupiravir in COVID-19 were additionally searched from the ClinicalTrials.Gov and ctri.nic.in/Clinicaltrials. We retrieved all the available granular details of phase 1 to 3 studies of molnupiravir in COVID-19. Subsequently we reviewed the results narratively.ResultsTwo phase 1 double-blind, randomized, placebo-controlled (DBRPC) studies of molnupiravir showed that 1600 mg daily dose is safe and tolerable, without any serious adverse events up to 5.5 days. One phase 2 DBPRC study found significantly lower time to clearance (RNA negativity) with molnupiravir 800 mg twice daily compared to the placebo (log-rank p value = 0.013) in mild to moderate COVID-19. Interim report of one phase 3 DBRPC study in non-hospitalized COVID-19 found a significant reduction in the risk of hospital admission or death by 50% (p = 0.0012). However, no significant benefit was observed with molnupiravir in the later stage of moderate to severe COVID-19.ConclusionMolnupiravir is first oral antiviral drug to demonstrate a significant benefit in reducing hospitalization or death in mild COVID-19 and could be an important weapon in the battle against SARS-CoV-2. However, its role in moderate to severe COVID-19 is questionable and more studies are needed.