Project description:A proportion of patients with fibrosing interstitial lung diseases (ILDs) develop a progressive phenotype characterised by decline in lung function, worsening quality of life and early mortality. Other than idiopathic pulmonary fibrosis (IPF), there are no approved drugs for fibrosing ILDs and a poor evidence base to support current treatments. Fibrosing ILDs with a progressive phenotype show commonalities in clinical behaviour and in the pathogenic mechanisms that drive disease worsening. Nintedanib is an intracellular inhibitor of tyrosine kinases that has been approved for treatment of IPF and has recently been shown to reduce the rate of lung function decline in patients with ILD associated with systemic sclerosis (SSc-ILD). In vitro data demonstrate that nintedanib inhibits several steps in the initiation and progression of lung fibrosis, including the release of pro-inflammatory and pro-fibrotic mediators, migration and differentiation of fibrocytes and fibroblasts, and deposition of extracellular matrix. Nintedanib also inhibits the proliferation of vascular cells. Studies in animal models with features of fibrosing ILDs such as IPF, SSc-ILD, rheumatoid arthritis-ILD, hypersensitivity pneumonitis and silicosis demonstrate that nintedanib has anti-fibrotic activity irrespective of the trigger for the lung pathology. This suggests that nintedanib inhibits fundamental processes in the pathogenesis of fibrosis. A trial of nintedanib in patients with progressive fibrosing ILDs other than IPF (INBUILD) will report results in 2019.
Project description:A proportion of patients with interstitial lung diseases (ILDs), including the ILDs that are commonly associated with autoimmune diseases, develop a progressive fibrosing phenotype characterised by worsening of lung function, dyspnoea and quality of life, and early mortality. No drugs are approved for the treatment of ILDs other than idiopathic pulmonary fibrosis (IPF). At present, immunomodulatory medications are the mainstay of treatment for non-IPF ILDs. However, with the exception of systemic sclerosis-associated ILD, the evidence to suggest that immunosuppression may preserve lung function in patients with these ILDs comes only from retrospective, observational, or uncontrolled studies. In this article, we review the evidence for the treatments currently used to treat ILDs associated with autoimmune diseases and other ILDs and the ongoing trials of immunosuppressant and antifibrotic therapies in patients with these ILDs.Funding: Boehringer Ingelheim.
Project description:Acute exacerbation of interstitial lung disease (ILD) is associated with a poor prognosis and high mortality. Numerous studies have documented acute exacerbation in idiopathic pulmonary fibrosis (IPF), but less is known about these events in other ILDs that may present a progressive-fibrosing phenotype. We propose defining acute exacerbation as an acute, clinically significant respiratory deterioration, typically less than 1 month in duration, together with computerised tomography imaging showing new bilateral glass opacity and/or consolidation superimposed on a background pattern consistent with fibrosing ILDs. Drawing on observations in IPF, it is suspected that epithelial injury or proliferation and autoimmunity are risk factors for acute exacerbation in ILDs that may present a progressive-fibrosing phenotype, but further studies are required. Current acute exacerbation management strategies are based on recommendations in IPF, but no randomised controlled trials of acute exacerbation management have been performed. Although there are no formal strategies to prevent the development of acute exacerbation, possible approaches include antifibrotic drugs (such as nintedanib and pirfenidone), and minimising exposure to infection, airborne irritants and pollutants. This review discusses the current knowledge of acute exacerbation of ILDs that may present a progressive-fibrosing phenotype and acknowledges limitations of the data available.
Project description:Despite conventional treatment, a proportion of interstitial lung disease (ILD) patients develop a progressive phenotype known as "fibrosing ILD with a progressive phenotype" (PF-ILD), characterized by worsening respiratory symptoms, decline in lung function, and early mortality. This review describes the epidemiology, and the humanistic and economic burden of PF-ILDs other than idiopathic pulmonary fibrosis (non-IPF PF-ILD). A structured review of the literature was conducted, using predefined search strategies in Ovid MEDLINE and EMBASE, and supplemented with gray literature searches. The search identified 3,002 unique articles and an additional 3 sources were included from the gray literature; 21 publications were included. The estimated prevalence of non-IPF PF-ILD ranges from 6.9 to 70.3/100,000 persons and the estimated incidence from 2.1 to 32.6/100,000 person-years. Limited evidence demonstrates that PF-ILD has a significant impact on patients' quality of life, affecting their daily lives, psychological well-being, careers, and relationships. PF-ILD is also associated with significant economic burden, demonstrating higher healthcare resource use and direct costs compared with the non-progressive phenotype, and indirect costs, which include job losses. This review indicates that PF-ILD places a considerable humanistic burden on both patients and caregivers, and a substantial economic burden on healthcare systems, patients, and society.
Project description:Interstitial lung diseases (ILDs) are a large and diverse group of rare and chronic respiratory disorders, with idiopathic pulmonary fibrosis (IPF) being the most common and best-studied member. Increasing interest in fibrosis as a therapeutic target and the appreciation that fibrotic mechanisms may be a treatable target of IPF prompted the development and subsequent approval of the antifibrotics, pirfenidone and nintedanib. The management of ILDs has changed considerably following an understanding that IPF and some ILDs share similar disease behavior of progressive fibrosis, termed "progressive fibrosing phenotype". Indeed, antifibrotic treatment has shown to be beneficial in ILDs characterized by the progressive fibrosing phenotype. This narrative review summarizes current knowledge in the field of progressive fibrosing ILDs. Here, we discuss the clinical characteristics and pathogenesis of lung fibrosis and highlight relevant literature concerning the mechanisms underlying progressive fibrosing ILDs. We also summarize current diagnostic approaches and the available treatments of progressive fibrosing ILDs and address the optimization of treating progressive fibrosing ILDs with antifibrotics in clinical practice.
Project description:The concept of progressive fibrosing interstitial lung disease (PF-ILD) has recently emerged. However, real-life proportion of PF-ILDs outside IPF is still hard to evaluate. Therefore, we sought to estimate the proportion of PF-ILD in our ILD cohort. We also determined the proportion of ILD subtypes within PF-ILD and investigated factors associated with PF-ILDs. Finally, we quantified interobserver agreement between radiologists for the assessment of fibrosis. We reviewed the files of ILD patients discussed in multidisciplinary discussion between January 1st 2017 and December 31st 2019. Clinical data, pulmonary function tests (PFTs) and high-resolution computed tomography (HRCTs) were centrally reviewed. Fibrosis was defined as the presence of traction bronchiectasis, reticulations with/out honeycombing. Progression was defined as a relative forced vital capacity (FVC) decline of ≥ 10% in ≤ 24 months or 5% < FVC decline < 10% and progression of fibrosis on HRCT in ≤ 24 months. 464 consecutive ILD patients were included. 105 had a diagnosis of IPF (23%). Most frequent non-IPF ILD were connective tissue disease (CTD)-associated ILD (22%), hypersensitivity pneumonitis (13%), unclassifiable ILD (10%) and sarcoidosis (8%). Features of fibrosis were common (82% of CTD-ILD, 81% of HP, 95% of uILD). After review of HRCTs and PFTs, 68 patients (19% of non-IPF ILD) had a PF-ILD according to our criteria. Interobserver agreement for fibrosis between radiologists was excellent (Cohen's kappa 0.86). The main diagnosis among PF-ILD were CTD-ILD (36%), HP (22%) and uILD (20%). PF-ILD patients were significantly older than non-F-ILD (P = 0.0005). PF-ILDs represent about 20% of ILDs outside IPF. This provides an estimation of the proportion of patients who might benefit from antifibrotics. Interobserver agreement between radiologists for the diagnosis of fibrotic ILD is excellent.
Project description:Background: Progressive fibrosing interstitial lung disease (PF-ILD) and idiopathic pulmonary fibrosis (IPF) share similar progression phenotype but with different pathophysiological mechanism. The purpose of this study was to assess clinical characteristics and outcomes of patients with PF-ILD in a single-center cohort. Methods: Patients with PF-ILD treated in Shanghai Pulmonary Hospital from Jan. 2013 to Dec. 2014 were retrospectively analyzed. Baseline characteristics and clinical outcomes were collected for survival analysis to identifying clinical predictors of mortality. Results: Among 608 patients with ILD, 132 patients met the diagnostic criteria for PF-ILD. In this single-center cohort, there were 51 (38.6%) cases with connective tissue disease-associated interstitial lung disease (CTD-ILD) and 45 (34.1%) with unclassifiable ILDs. During follow-up, 83 patients (62.9%) either died (N = 79, 59.8%) or underwent lung transplantations (N = 4, 3.0%) with a median duration follow-up time of 53.7 months. Kaplan-Meier survival curves revealed that the 1, 3 and 5-years survival of PF-ILD were 90.9, 58.8 and 48.1%, respectively. In addition, the prognosis of patients with PF-ILD was similar to those with IPF, while it was worse than non-PF-ILD ones. Multivariate Cox regression analysis demonstrated that high-resolution computed tomography (HRCT) scores (HR 1.684, 95% CI 1.017-2.788, p = 0.043) and systolic pulmonary artery pressure (SPAP) > 36.5 mmHg (HR 3.619, 95%CI 1.170-11.194, p = 0.026) were independent risk factors for the mortality of PF-ILD. Conclusion: Extent of fibrotic changes on HRCT and pulmonary hypertension were predictors of mortality in patients with PF-ILD.
Project description:We used data from the INBUILD and INPULSIS trials to investigate the natural history of progressive fibrosing interstitial lung diseases (ILDs).Subjects in the two INPULSIS trials had a clinical diagnosis of idiopathic pulmonary fibrosis (IPF) while subjects in the INBUILD trial had a progressive fibrosing ILD other than IPF and met protocol-defined criteria for ILD progression despite management. Using data from the placebo groups, we compared the rate of decline in forced vital capacity (FVC) (mL·year-1) and mortality over 52 weeks in the INBUILD trial with pooled data from the INPULSIS trials.The adjusted mean annual rate of decline in FVC in the INBUILD trial (n=331) was similar to that observed in the INPULSIS trials (n=423) (-192.9 mL·year-1 and -221.0 mL·year-1, respectively; nominal p-value=0.19). The proportion of subjects who had a relative decline in FVC >10% predicted at Week 52 was 48.9% in the INBUILD trial and 48.7% in the INPULSIS trials, and the proportion who died over 52 weeks was 5.1% in the INBUILD trial and 7.8% in the INPULSIS trials. A relative decline in FVC >10% predicted was associated with an increased risk of death in the INBUILD trial (hazard ratio 3.64) and the INPULSIS trials (hazard ratio 3.95).These findings indicate that patients with fibrosing ILDs other than IPF, who are progressing despite management, have a subsequent clinical course similar to patients with untreated IPF, with a high risk of further ILD progression and early mortality.
Project description:A proportion of patients with certain types of interstitial lung disease (ILD), including chronic hypersensitivity pneumonitis and ILDs associated with autoimmune diseases, develop a progressive fibrosing phenotype that shows similarities in clinical course to idiopathic pulmonary fibrosis. Irrespective of the clinical diagnosis, these progressive fibrosing ILDs show commonalities in the underlying pathogenetic mechanisms that drive a self-sustaining process of pulmonary fibrosis. The natural history of progressive fibrosing ILDs is characterized by decline in lung function, worsening of symptoms and health-related quality of life, and early mortality. Greater impairment in forced vital capacity or diffusion capacity of the lungs for carbon monoxide, and a greater extent of fibrotic changes on a computed tomography scan, are predictors of mortality in patients with fibrosing ILDs. However, the course of these diseases is heterogenous and cannot accurately be predicted for an individual patient. Data from ongoing clinical trials and patient registries will provide a better understanding of the clinical course and impact of progressive fibrosing ILDs.
Project description:A proportion of patients with interstitial lung diseases (ILDs) are at risk of developing a progressive-fibrosing phenotype, which is associated with a deterioration in lung function and early mortality. In addition to idiopathic pulmonary fibrosis (IPF), fibrosing ILDs that may present a progressive phenotype include idiopathic nonspecific interstitial pneumonia, connective tissue disease-associated ILDs, hypersensitivity pneumonitis, unclassifiable idiopathic interstitial pneumonia, ILDs related to other occupational exposures and sarcoidosis. Corticosteroids and/or immunosuppressive therapies are sometimes prescribed to patients with these diseases. However, this treatment regimen may not be effective, adequate on its own or well tolerated, suggesting that there is a pressing need for efficacious and better tolerated therapies. Currently, the only approved treatments to slow disease progression in patients with IPF are nintedanib and pirfenidone. Similarities in pathobiological mechanisms leading to fibrosis between IPF and other ILDs that may present a progressive-fibrosing phenotype provide a rationale to suggest that nintedanib and pirfenidone may be therapeutic options for patients with the latter diseases.This review provides an overview of the therapeutic options currently available for patients with fibrosing ILDs, including fibrosing ILDs that may present a progressive phenotype, and explores the status of the randomised controlled trials that are underway to determine the efficacy and safety of nintedanib and pirfenidone.