Unknown

Dataset Information

0

Lactobacillusjohnsonii L531 Protects against Salmonella Infantis-Induced Intestinal Damage by Regulating the NOD Activation, Endoplasmic Reticulum Stress, and Autophagy.


ABSTRACT: Salmonella enterica serovar Infantis (S. Infantis) is an intracellular bacterial pathogen. It is prevalent but resistant to antibiotics. Therefore, the therapeutic effect of antibiotics on Salmonella infection is limited. In this study, we used the piglet diarrhea model and the Caco2 cell model to explore the mechanism of probiotic Lactobacillus johnsonii L531 (L. johnsonii L531) against S. Infantis infection. L. johnsonii L531 attenuated S. Infantis-induced intestinal structural and cellular ultrastructural damage. The expression of NOD pathway-related proteins (NOD1/2, RIP2), autophagy-related key proteins (ATG16L1, IRGM), and endoplasmic reticulum (ER) stress markers (GRP78, IRE1) were increased after S. Infantis infection. Notably, L. johnsonii L531 pretreatment not only inhibited the activation of the above signaling pathways but also played an anti-S. Infantis infection role in accelerating autophagic degradation. However, RIP2 knockdown did not interfere with ER stress and the activation of autophagy induced by S. Infantis in Caco2 cells. Our data suggest that L. johnsonii L531 pretreatment alleviates the intestinal damage caused by S. Infantis by inhibiting NOD activation and regulating ER stress, as well as promoting autophagic degradation.

SUBMITTER: Yang L 

PROVIDER: S-EPMC9499332 | biostudies-literature | 2022 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

<i>Lactobacillus</i><i>johnsonii</i> L531 Protects against <i>Salmonella</i> Infantis-Induced Intestinal Damage by Regulating the NOD Activation, Endoplasmic Reticulum Stress, and Autophagy.

Yang Lan L   Wang Jiu-Feng JF   Liu Ning N   Wang Xue X   Wang Jing J   Yang Guang-Hui GH   Yang Gui-Yan GY   Zhu Yao-Hong YH  

International journal of molecular sciences 20220908 18


<i>Salmonella enterica</i> serovar Infantis (<i>S.</i> Infantis) is an intracellular bacterial pathogen. It is prevalent but resistant to antibiotics. Therefore, the therapeutic effect of antibiotics on <i>Salmonella</i> infection is limited. In this study, we used the piglet diarrhea model and the Caco2 cell model to explore the mechanism of probiotic <i>Lactobacillus johnsonii</i> L531 (<i>L. johnsonii</i> L531) against <i>S.</i> Infantis infection. <i>L. johnsonii</i> L531 attenuated <i>S.</i  ...[more]

Similar Datasets

| S-EPMC7041187 | biostudies-literature
| S-EPMC8468631 | biostudies-literature
| S-EPMC10005772 | biostudies-literature
| S-EPMC7558184 | biostudies-literature
| S-EPMC5785727 | biostudies-literature
| S-EPMC11821923 | biostudies-literature
| S-EPMC7653860 | biostudies-literature
| S-EPMC7409499 | biostudies-literature
| S-EPMC6168278 | biostudies-literature
| S-EPMC10635891 | biostudies-literature