Unknown

Dataset Information

0

New Insights into the Thermal Stability of 1-Butyl-3-methylimidazolium-Based Ionic Liquids.


ABSTRACT: One of the most promising applications of ionic liquids (ILs) with 1-butyl-3-methylimidazolium (bmim) cation is based on their unique ability to dissolve and fractionate lignocellulosic biomass, allowing for the development of green biorefining technologies. A complete dissolution of lignocellulose requires prolonged treatment at elevated temperatures, which can cause the partial degradation of ILs. In the present study, a combination of various analytical techniques (GC-MS, HPLC-HRMS, 2D-NMR, synchronous thermal analysis) was used for the comprehensive characterization of bmim acetate, chloride, and methyl sulfate degradation products formed at 150 °C during 6- and 24-h thermal treatment. A number of volatile and non-volatile products, including monomeric and dimeric alkyl substituted imidazoles, alcohols, alkyl amines, methyl and butyl acetates, and N-alkylamides, was identified. By thermal lability, ILs can be arranged in the following sequence, coinciding with the decrease in basicity of the anion: [bmim]OAc > [bmim]Cl > [bmim]MeSO4. The accumulation of thermal degradation products in ILs, in turn, affects their physico-chemical properties and thermal stability, and leads to a decrease in the decomposition temperature, a change in the shape of the thermogravimetric curves, and the formation of carbon residue during pyrolysis.

SUBMITTER: Belesov AV 

PROVIDER: S-EPMC9502186 | biostudies-literature | 2022 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

New Insights into the Thermal Stability of 1-Butyl-3-methylimidazolium-Based Ionic Liquids.

Belesov Artyom V AV   Shkaeva Natalya V NV   Popov Mark S MS   Skrebets Tatyana E TE   Faleva Anna V AV   Ul'yanovskii Nikolay V NV   Kosyakov Dmitry S DS  

International journal of molecular sciences 20220919 18


One of the most promising applications of ionic liquids (ILs) with 1-butyl-3-methylimidazolium (bmim) cation is based on their unique ability to dissolve and fractionate lignocellulosic biomass, allowing for the development of green biorefining technologies. A complete dissolution of lignocellulose requires prolonged treatment at elevated temperatures, which can cause the partial degradation of ILs. In the present study, a combination of various analytical techniques (GC-MS, HPLC-HRMS, 2D-NMR, s  ...[more]

Similar Datasets

| S-EPMC9050618 | biostudies-literature
| S-EPMC9761679 | biostudies-literature
| S-EPMC10262066 | biostudies-literature
| S-EPMC7288359 | biostudies-literature
2021-08-13 | GSE156769 | GEO
| S-EPMC8775716 | biostudies-literature
| S-EPMC5288766 | biostudies-literature
| S-EPMC7180691 | biostudies-literature
| S-EPMC8781894 | biostudies-literature
| S-EPMC7591794 | biostudies-literature