Calix[4]pyrrolato gallate: square planar-coordinated gallium(iii) and its metal–ligand cooperative reactivity with CO2 and alcohols† † Electronic supplementary information (ESI) available. CCDC [2175981–2175983]. For ESI and crystallographic data in CIF or other electronic format see https://doi.org/10.1039/d2sc03054c
Ontology highlight
ABSTRACT: Forcing a priori tetracoordinate atoms into planar configuration represents a promising concept for enhanced reactivity of p-block element-based systems. Herein, the synthesis, characterization, and reactivity of calix[4]pyrrolato gallates, constituting square planar-coordinated gallium(iii) atoms, are reported. Unusual structural constraint-induced Lewis acidity against neutral and anionic donors is disclosed by experiment and rationalized by computations. An energetically balanced dearomatization/rearomatization of a pyrrole unit enables fully reversible metal–ligand cooperative capture of CO2. While alcohols are found unreactive against the gallates, a rapid and selective OH-bond activation can be triggered upon protonation of the ligand. Secondary ligand–sphere modification adds a new avenue to structurally-constrained complexes that unites functional group tolerance with unconventional reactivity. Ideally square-planar coordinated gallium(iii) species is isolated and fully characterized. Spontaneous metal–ligand cooperative reactivity towards CO2 is observed, while OH-bond activation of alcohols can be triggered by protonation of the ligand.
SUBMITTER: Sigmund L
PROVIDER: S-EPMC9516954 | biostudies-literature | 2022 Sep
REPOSITORIES: biostudies-literature
ACCESS DATA