Project description:Alternative promoter usage and alternative splicing enable diversification of the transcriptome. Here we demonstrate that the function of Synaptic GTPase-Activating Protein (SynGAP), a key synaptic protein, is determined by the combination of its amino-terminal sequence with its carboxy-terminal sequence. 5' rapid amplification of cDNA ends and primer extension show that different N-terminal protein sequences arise through alternative promoter usage that are regulated by synaptic activity and postnatal age. Heterogeneity in C-terminal protein sequence arises through alternative splicing. Overexpression of SynGAP α1 versus α2 C-termini-containing proteins in hippocampal neurons has opposing effects on synaptic strength, decreasing and increasing miniature excitatory synaptic currents amplitude/frequency, respectively. The magnitude of this C-terminal-dependent effect is modulated by the N-terminal peptide sequence. This is the first demonstration that activity-dependent alternative promoter usage can change the function of a synaptic protein at excitatory synapses. Furthermore, the direction and degree of synaptic modulation exerted by different protein isoforms from a single gene locus is dependent on the combination of differential promoter usage and alternative splicing.
Project description:SynGAP is a synaptic Ras GTPase-activating protein (GAP) with four C-terminal splice variants: α1, α2, β, and γ. Although studies have implicated SYNGAP1 in several cognitive disorders, it is not clear which SynGAP isoforms contribute to disease. Here, we demonstrate that SynGAP isoforms exhibit unique spatiotemporal expression patterns and play distinct roles in neuronal and synaptic development in mouse neurons. SynGAP-α1, which undergoes liquid-liquid phase separation with PSD-95, is highly enriched in synapses and is required for LTP. In contrast, SynGAP-β, which does not bind PSD-95 PDZ domains, is less synaptically targeted and promotes dendritic arborization. A mutation in SynGAP-α1 that disrupts phase separation and synaptic targeting abolishes its ability to regulate plasticity and instead causes it to drive dendritic development like SynGAP-β. These results demonstrate that distinct intrinsic biochemical properties of SynGAP isoforms determine their function, and individual isoforms may differentially contribute to the pathogenesis of SYNGAP1-related cognitive disorders.
Project description:Synucleinopathies are characterized by the accumulation of insoluble ?-synuclein (?Syn). To test whether ?Syn aggregates modulate synaptic activity, we used a recently developed model in primary neurons for inducing ?Syn pathology. We demonstrated that preformed fibrils (PFFs) generated with recombinant human ?Syn compromised synaptic activity in a time- and dose-dependent manner and that the magnitude of these deficits correlated with the formation of ?Syn pathology in cultured excitatory hippocampal neurons from both sexes of mice. Remarkably, acute passive infusion of ?Syn PFFs from whole-cell patch-clamp pipette decreased mEPSC frequency within 10 min followed by induction of ?Syn pathology within 1 d. Moreover, by direct addition of ?Syn PFFs into culture medium, the formation of misfolded ?Syn inclusions dramatically compromised the colocalization of synaptic markers and altered dynamic changes of dendritic spines, but the viability of neurons was not affected up to 7 d post-treatment with ?Syn PFFs. Our data indicate that intraneuronal ?Syn fibrils impaired the initiation of synaptogenesis and their physiological functions, thereby suggesting that targeting synaptic dysfunction in synucleinopathies may provide a promising therapeutic direction.SIGNIFICANCE STATEMENT Under pathological conditions, the presynaptic protein ?-synuclein (?Syn) aggregates to form intraneuronal inclusions. To understand how and to what extent ?Syn aggregates modulate synaptic activity before neuron loss, we demonstrate that ?Syn preformed fibrils (PFFs) reduced synaptic activity in a dose- and time-dependent manner. The magnitude of these deficits correlated with the deposition of ?Syn pathology, which dramatically compromised the colocalization of synaptic markers and altered the dendritic spine dynamics. The present work further highlights the impact of ?Syn PFFs on synaptogenesis and physiological function, which may be applicable to other types of synucleinopathies.
Project description:Parkinson's disease (PD) and Dementia with Lewy bodies (DLB) are characterized by neuronal α-synuclein (α-syn) inclusions termed Lewy Pathology, which are abundant in the amygdala. The basolateral amygdala (BLA), in particular, receives projections from the thalamus and cortex. These projections play a role in cognition and emotional processing, behaviors which are impaired in α-synucleinopathies. To understand if and how pathologic α-syn impacts the BLA requires animal models of α-syn aggregation. Injection of α-syn pre-formed fibrils (PFFs) into the striatum induces robust α-syn aggregation in excitatory neurons in the BLA that corresponds with reduced contextual fear conditioning. At early time points after aggregate formation, cortico-amygdala excitatory transmission is abolished. The goal of this project was to determine if α-syn inclusions in the BLA induce synaptic degeneration and/or morphological changes. In this study, we used C57BL/6 J mice injected bilaterally with PFFs in the dorsal striatum to induce α-syn aggregate formation in the BLA. A method was developed using immunofluorescence and three-dimensional reconstruction to analyze excitatory cortico-amygdala and thalamo-amygdala presynaptic terminals closely juxtaposed to postsynaptic densities. The abundance and morphology of synapses were analyzed at 6- or 12-weeks post-injection of PFFs. α-Syn aggregate formation in the BLA did not cause a significant loss of synapses, but cortico-amygdala and thalamo-amygdala presynaptic terminals and postsynaptic densities with aggregates of α-syn show increased volumes, similar to previous findings in human DLB cortex, and in non-human primate models of PD. Transmission electron microscopy showed that asymmetric synapses in mice with PFF-induced α-syn aggregates have reduced synaptic vesicle intervesicular distances, similar to a recent study showing phospho-serine-129 α-syn increases synaptic vesicle clustering. Thus, pathologic α-syn causes major alterations to synaptic architecture in the BLA, potentially contributing to behavioral impairment and amygdala dysfunction observed in synucleinopathies.
Project description:SynGAP is an abundant synaptic GTPase-activating protein (GAP) critical for synaptic plasticity, learning, memory, and cognition. Mutations in SYNGAP1 in humans result in intellectual disability, autistic-like behaviors, and epilepsy. Heterozygous Syngap1-knockout mice display deficits in synaptic plasticity, learning, and memory and exhibit seizures. It is unclear whether SynGAP imparts structural properties at synapses independently of its GAP activity. Here, we report that inactivating mutations within the GAP domain do not inhibit synaptic plasticity or cause behavioral deficits. Instead, SynGAP modulates synaptic strength by physically competing with the AMPA-receptor-TARP excitatory receptor complex in the formation of molecular condensates with synaptic scaffolding proteins. These results have major implications for developing therapeutic treatments for SYNGAP1-related neurodevelopmental disorders.
Project description:Silent synapses, or excitatory synapses that lack functional alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs), are thought to be critical for regulation of neuronal circuits and synaptic plasticity. Here, we report that SynGAP, an excitatory synapse-specific RasGAP, regulates AMPAR trafficking, silent synapse number, and excitatory synaptic transmission in hippocampal and cortical cultured neurons. Overexpression of SynGAP in neurons results in a remarkable depression of AMPAR-mediated miniature excitatory postsynaptic currents, a significant reduction in synaptic AMPAR surface expression, and a decrease in the insertion of AMPARs into the plasma membrane. This change is specific for AMPARs because no change is observed in synaptic NMDA receptor expression or total synapse density. In contrast to these results, synaptic transmission is increased in neurons from SynGAP knockout mice as well as in neuronal cultures treated with SynGAP small interfering RNA. In addition, activation of the extracellular signal-regulated kinase, ERK, is significantly decreased in SynGAP-overexpressing neurons, whereas P38 mitogen-activated protein kinase (MAPK) signaling is potentiated. Furthermore, ERK activation is up-regulated in neurons from SynGAP knockout mice, whereas P38 MAPK function is depressed. Taken together, these data suggest that SynGAP plays a critical role in the regulation of neuronal MAPK signaling, AMPAR membrane trafficking, and excitatory synaptic transmission.
Project description:Synapse formation is a dynamic process essential for the development and maturation of the neuronal circuitry in the brain. At the synaptic cleft, trans-synaptic protein-protein interactions are major biological determinants of proper synapse efficacy. The balance of excitatory and inhibitory synaptic transmission (E-I balance) stabilizes synaptic activity, and dysregulation of the E-I balance has been implicated in neurodevelopmental disorders, including autism spectrum disorders. However, the molecular mechanisms underlying the E-I balance remain to be elucidated. Here, using single-cell transcriptomics, immunohistochemistry, and electrophysiology approaches to murine CA1 pyramidal neurons obtained from organotypic hippocampal slice cultures, we investigate neuroligin (Nlgn) genes that encode a family of postsynaptic adhesion molecules known to shape excitatory and inhibitory synaptic function. We demonstrate that the NLGN3 protein differentially regulates inhibitory synaptic transmission in a splice isoform-dependent manner at hippocampal CA1 synapses. We also found that distinct subcellular localizations of the NLGN3 isoforms contribute to the functional differences observed among these isoforms. Finally, results from single-cell RNA-Seq analyses revealed that Nlgn1 and Nlgn3 are the major murine Nlgn genes and that the expression levels of the Nlgn splice isoforms are highly diverse in CA1 pyramidal neurons. Our results delineate isoform-specific effects of Nlgn genes on the E-I balance in the murine hippocampus.
Project description:Neurotrophin receptor tyrosine kinases (Trks) have well-defined trophic roles in nervous system development through kinase activation by neurotrophins. Yet Trks have typical cell-adhesion domains and express noncatalytic isoforms, suggesting additional functions. Here we discovered noncatalytic TrkC in an unbiased hippocampal neuron-fibroblast coculture screen for proteins that trigger differentiation of neurotransmitter release sites in axons. All TrkC isoforms, but not TrkA or TrkB, function directly in excitatory glutamatergic synaptic adhesion by neurotrophin-independent high-affinity trans binding to axonal protein tyrosine phosphatase receptor PTPσ. PTPσ triggers and TrkC mediates clustering of postsynaptic molecules in dendrites, indicating bidirectional synaptic organizing functions. Effects of a TrkC-neutralizing antibody that blocks TrkC-PTPσ interaction and TrkC knockdown in culture and in vivo reveal essential roles of TrkC-PTPσ in glutamatergic synapse formation. Thus, postsynaptic TrkC trans interaction with presynaptic PTPσ generates bidirectional adhesion and recruitment essential for excitatory synapse development and positions these signaling molecules at the center of synaptic pathways.
Project description:Synapse formation is a dynamic process essential for neuronal circuit development and maturation. At the synaptic cleft, trans-synaptic protein-protein interactions constitute major biological determinants of proper synapse efficacy. The balance of excitatory and inhibitory synaptic transmission (E-I balance) stabilizes synaptic activity and its dysregulation has been implicated in neurodevelopmental disorders including autism spectrum disorders. However, the molecular mechanisms underlying E-I balance remains to be elucidated. Here, we investigate Neuroligin (Nlgn) genes which encode a family of postsynaptic adhesion molecules that shape excitatory and inhibitory synaptic function. We identified that NLGN3 protein differentially regulates inhibitory synaptic transmission in a splice isoform-dependent manner in hippocampal CA1 synapses. Distinct subcellular localization patterns of NLGN3 isoforms contribute to the functional differences observed among splice variants. Finally, our single-cell sequencing analysis reveals that Nlgn1 and Nlgn3 are the major Nlgn genes and that Nlgn splice isoforms are highly diverse in CA1 pyramidal neurons.
Project description:Rett syndrome is a leading cause of intellectual disability in females primarily caused by loss of function mutations in the transcriptional regulator MeCP2. Loss of MeCP2 leads to a host of synaptic phenotypes that are believed to underlie Rett syndrome pathophysiology. Synaptic deficits vary by brain region upon MeCP2 loss, suggesting distinct molecular alterations leading to disparate synaptic outcomes. In this study, we examined the contribution of MeCP2's newly described role in miRNA regulation to regional molecular and synaptic impairments. Two miRNAs, miR-101a and miR-203, were identified and confirmed as upregulated in MeCP2 KO mice in the hippocampus and cortex, respectively. miR-101a overexpression in hippocampal cultures led to opposing effects at excitatory and inhibitory synapses and in spontaneous and evoked neurotransmission, revealing the potential for a single miRNA to broadly regulate synapse function in the hippocampus. These results highlight the importance of regional alterations in miRNA expression and the specific impact on synaptic function with potential implications for Rett syndrome.