Immune checkpoint inhibitors for non-small cell lung cancer patients on steroid or non-steroidal anti-inflammatory drugs treatment-therapeutic indication or therapeutic efficacy?
Immune checkpoint inhibitors for non-small cell lung cancer patients on steroid or non-steroidal anti-inflammatory drugs treatment-therapeutic indication or therapeutic efficacy?
Project description:Non-steroidal anti-inflammatory drugs (NSAIDs) are among the most commonly used drugs in the world. While the role of NSAIDs as cyclooxygenase (COX) inhibitors is well established, other targets may contribute to anti-inflammation. Here we report caspases as a new pharmacological target for NSAID family drugs such as ibuprofen, naproxen, and ketorolac at physiologic concentrations both in vitro and in vivo. We characterize caspase activity in both in vitro and in cell culture, and combine computational modeling and biophysical analysis to determine the mechanism of action. We observe that inhibition of caspase catalysis reduces cell death and the generation of pro-inflammatory cytokines. Further, NSAID inhibition of caspases is COX independent, representing a new anti-inflammatory mechanism. This finding expands upon existing NSAID anti-inflammatory behaviors, with implications for patient safety and next-generation drug design.
Project description:Background: The selection strategy of non-steroidal anti-inflammatory drugs (NSAIDs) for migraine is hard to judge whether it is effective, leading to unnecessary exposure to insufficient or lengthy treatment trials. The goal of the study was to investigate potential predictors of NSAIDs efficacy in migraine therapy and to explore their influence on efficacy. Methods: 610 migraine patients were recruited and assigned into responders and non-responders. Potential predictors among demographic and clinical characteristics for NSAIDs efficacy were extracted using multivariable logistic regression (LR) analysis, and were applied to construct prediction models via machine learning (ML) algorithms. Finally, Cochran-Mantel-Haenszel tests were used to examine the impact of each predictor on drug efficacy. Results: Multivariate LR analysis revealed migraine-related (disease duration, headache intensity and frequency) and psychiatric (anxiety, depression and sleep disorder) characteristics were predictive of NSAIDs efficacy. The accuracies of ML models using support vector machine, decision tree and multilayer perceptron were 0.712, 0.741, and 0.715, respectively. Cochran-Mantel-Haenszel test showed that, for variables with homogeneity of odds ratio, disease duration, frequency, anxiety, and depression and sleep disorder were associated with decreased likelihood of response to all NSAIDs. However, the variabilities in the efficacy of acetaminophen and celecoxib between patients with mild and severe headache intensity were not confirmed. Conclusion: Migraine-related and psychiatric parameters play a critical role in predicting the outcomes of acute migraine treatment. These models based on predictors could optimize drug selection and improve benefits from the start of treatment.
Project description:Non-steroidal anti-inflammatory drugs (NSAIDs) are popular choices for the mitigation of pain and inflammation; however, they are accompanied by side effects in the gastrointestinal and cardiovascular systems. We compared the effects of naproxen, a traditional NSAID, and celecoxib, a cyclooxygenase -2 (Cox-2) inhibitor, in humans. Our findings showed a decrease in tryptophan and kynurenine levels in plasma of volunteers treated with naproxen. We further validated this result in mice. Additionally, we find that the depression of tryptophan was independent of both Cox-1 and Cox-2 inhibition, but rather was due to the displacement of bound tryptophan by naproxen. Supplementation of tryptophan in naproxen-treated mice rescued fecal blood loss and inflammatory gene expression driven by IL-1β in the heart.
Project description:Cyclooxygenase (COX) enzymes comprise COX-1 and COX-2 isoforms and are responsible for prostaglandin production. Prostaglandins have critical roles in the inflammation pathway and must be controlled by administration of selective nonsteroidal anti-inflammatory drugs (NSAIDs). Selective COX-2 inhibitors have been among the most used NSAIDs during the ongoing coronavirus 2019 pandemic because they reduce pain and protect against inflammation-related diseases. In this framework, the mechanism of action of both COX isoforms (particularly COX-2) as inflammation mediators must be reviewed. Moreover, proinflammatory cytokines such as tumor necrosis factor-α and interleukin (IL)-6, IL-1β, and IL-8 must be highlighted due to their major participation in upregulation of the inflammatory reaction. Structural and functional analyses of selective COX-2 inhibitors within the active-site cavity of COXs could enable introduction of lead structures with higher selectivity and potency against inflammation with fewer adverse effects. This review focuses on the biological activity of recently discovered synthetic COX-2, dual COX-2/lipoxygenase, and COX-2/soluble epoxide hydrolase hybrid inhibitors based primarily on the active motifs of related US Food and Drug Administration-approved drugs. These new agents could provide several advantages with regard to anti-inflammatory activity, gastrointestinal protection, and a safer profile compared with those of the NSAIDs celecoxib, valdecoxib, and rofecoxib.
Project description:Since colorectal cancer is one of the world's most common cancers, studies on its prevention and early diagnosis are an emerging area of clinical oncology these days. For this study, a review of randomized controlled, double-blind clinical trials of selected NSAIDs (aspirin, sulindac and celecoxib) in chemoprevention of colorectal cancer was conducted. The main molecular anticancer activity of NSAIDs is thought to be a suppression of prostaglandin E2 synthesis via cyclooxygenase-2 inhibition, which causes a decrease in tumor cell proliferation, angiogenesis, and increases apoptosis. The lower incidence of colorectal cancer in the NSAID patients suggests the long-lasting chemopreventive effect of drugs studied. This new approach to therapy of colorectal cancer may transform the disease from a terminal to a chronic one that can be taken under control.
Project description:Non-steroidal anti-inflammatory drugs (NSAIDs) are extensively prescribed in daily clinical practice. NSAIDs are the main cause of drug hypersensitivity reactions all over the world. The inhibition of cyclooxygenase enzymes by NSAIDs can perpetuate arachidonic acid metabolism, shunting to the 5-lipoxygenase pathway and its downstream inflammatory process. Clinical phenotypes of NSAID hypersensitivity are diverse and can be classified into cross-reactive or selective responses. Efforts have been made to understand pathogenic mechanisms, in which, genetic and epigenetic backgrounds are implicated in various processes of NSAID-induced hypersensitivity reactions. Although there were some similarities among patients, several genetic polymorphisms are distinct in those exhibiting respiratory or cutaneous symptoms. Moreover, the expression levels, as well as the methylation status of genes related to immune responses were demonstrated to be involved in NSAID-induced hypersensitivity reactions. There is still a lack of data on delayed type reactions. Further studies with a larger sample size, which integrate different genetic pathways, can help overcome current limitations of gen etic/epigenetic studies, and provide valuable information on NSAID hypersensitivity reactions.
Project description:BackgroundHeavy menstrual bleeding (HMB) is an important cause of ill health in premenopausal women. Although surgery is often used as a treatment, a range of medical therapies are also available. Non-steroidal anti-inflammatory drugs (NSAIDs) reduce prostaglandin levels, which are elevated in women with excessive menstrual bleeding and also may have a beneficial effect on dysmenorrhoea.ObjectivesTo determine the effectiveness, safety and tolerability of NSAIDs in achieving a reduction in menstrual blood loss (MBL) in women of reproductive years with HMB.Search methodsWe searched, in April 2019, the Cochrane Gynaecology and Fertility specialised register, Cochrane Central Register of Studies Online (CENTRAL CRSO), MEDLINE, Embase, PsycINFO, the clinical trial registries and reference lists of articles.Selection criteriaThe inclusion criteria were randomised comparisons of individual NSAIDs or combined with other medical therapy with each other, placebo or other medical treatments in women with regular heavy periods measured either objectively or subjectively and with no pathological or iatrogenic (treatment-induced) causes for their HMB.Data collection and analysisWe identified 19 randomised controlled trials (RCTs) (759 women) that fulfilled the inclusion criteria for this review and two review authors independently extracted data. We estimated odds ratios (ORs) for dichotomous outcomes and mean differences (MDs) for continuous outcomes from the data of nine trials. We described in data tables the results of the remaining seven cross-over trials with data unsuitable for pooling, one trial with skewed data, and one trial with missing variances. One trial had no data available for analysis.Main resultsAs a group, NSAIDs were more effective than placebo at reducing HMB but less effective than tranexamic acid, danazol or the levonorgestrel-releasing intrauterine system (LNG IUS). Treatment with danazol caused a shorter duration of menstruation and more adverse events than NSAIDs, but this did not appear to affect the acceptability of treatment, based on trials from 1980 to 1990. However, currently danazol is not a usual or recommended treatment for HMB. There was no clear evidence of difference between NSAIDs and the other treatments (oral luteal progestogen, ethamsylate, an older progesterone-releasing intrauterine system and the oral contraceptive pill (OCP), but most studies were underpowered. There was no evidence of a difference between the individual NSAIDs (naproxen and mefenamic acid) in reducing HMB. The evidence quality ranged from low to moderate, the main limitations being risk of bias and imprecision.Authors' conclusionsNSAIDs reduce HMB when compared with placebo, but are less effective than tranexamic acid, danazol or LNG IUS. However, adverse events are more severe with danazol therapy. In the limited number of small studies suitable for evaluation, there was no clear evidence of a difference in efficacy between NSAIDs and other medical treatments such as oral luteal progestogen, ethamsylate, OCP or the older progesterone-releasing intrauterine system.
Project description:Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the novel coronavirus disease 2019 (COVID-19), a highly pathogenic and sometimes fatal respiratory disease responsible for the current 2020 global pandemic. Presently, there remains no effective vaccine or efficient treatment strategies against COVID-19. Non-steroidal anti-inflammatory drugs (NSAIDs) are medicines very widely used to alleviate fever, pain, and inflammation (common symptoms of COVID-19 patients) through effectively blocking production of prostaglandins (PGs) via inhibition of cyclooxyganase enzymes. PGs can exert either proinflammatory or anti-inflammatory effects depending on the inflammatory scenario. In this review, we survey the potential roles that NSAIDs and PGs may play during SARS-CoV-2 infection and the development and progression of COVID-19. LINKED ARTICLES: This article is part of a themed issue on The Pharmacology of COVID-19. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.21/issuetoc.
Project description:Several epidemiological studies have correlated the use of non-steroidal anti-inflammatory drugs (NSAID) with reduced risk of ovarian cancer, the most lethal gynecological cancer, diagnosed usually in late stages of the disease. We have previously established that the pro-apoptotic cytokine melanoma differentiation associated gene-7/Interleukin-24 (mda-7/IL-24) is a crucial mediator of NSAID-induced apoptosis in prostate, breast, renal and stomach cancer cells. In this report we evaluated various structurally different NSAIDs for their efficacies to induce apoptosis and mda-7/IL-24 expression in ovarian cancer cells. While several NSAIDs induced apoptosis, Sulindac Sulfide and Diclofenac most potently induced apoptosis and reduced tumor growth. A combination of these agents results in a synergistic effect. Furthermore, mda-7/IL-24 induction by NSAIDs is essential for programmed cell death, since inhibition of mda-7/IL-24 by small interfering RNA abrogates apoptosis. mda-7/IL-24 activation leads to upregulation of growth arrest and DNA damage inducible (GADD) 45 α and γ and JNK activation. The NF-κB family of transcription factors has been implicated in ovarian cancer development. We previously established NF-κB/IκB signaling as an essential step for cell survival in cancer cells and hypothesized that targeting NF-κB could potentiate NSAID-mediated apoptosis induction in ovarian cancer cells. Indeed, combining NSAID treatment with NF-κB inhibitors led to enhanced apoptosis induction. Our results indicate that inhibition of NF-κB in combination with activation of mda-7/IL-24 expression may lead to a new combinatorial therapy for ovarian cancer.