Project description:BackgroundElectronic health record (EHR)-based clinical decision support tools can improve the use of evidence-based clinical guidelines for preeclampsia management that can reduce maternal mortality and morbidity. No study has investigated the organizational capabilities that enable hospitals to use EHR-based decision support tools to manage preeclampsia.ObjectiveTo examine the association of organizational capabilities and hospital adoption of EHR-based decision support tools for preeclampsia management.MethodsCross-sectional analyses of hospitals providing obstetric care in 2017. In total, 739 hospitals responded to the 2017-2018 National Survey of Healthcare Organizations and Systems (NSHOS) and were linked to the 2017 American Hospital Association (AHA) Annual Survey Database and the Area Health Resources File (AHRF). A total of 425 hospitals providing obstetric care across 49 states were included in the analysis. The main outcome was whether a hospital adopted EHR-based clinical decision support tools for preeclampsia management. Hospital organizational capabilities assessed as predictors include EHR functions, adoption of evidence-based clinical treatments, use of quality improvement methods, and dissemination processes to share best patient care practices. Logistic regression estimated the association of hospital organizational capabilities and hospital adoption of EHR-based decision support tools to manage preeclampsia, controlling for hospital structural and patient sociodemographic characteristics.ResultsTwo-thirds of the hospitals (68%) adopted EHR-based decision support tools for preeclampsia, and slightly more than half (56%) of hospitals had a single EHR system. Multivariable regression results indicate that hospitals with a single EHR system were more likely to adopt EHR-based decision support tools for preeclampsia (17.4 percentage points; 95% CI, 1.9 to 33.0; P < .05) than hospitals with a mixture of EHR and paper-based systems. Compared with hospitals having multiple EHRs, on average, hospitals having a single EHR were also more likely to adopt the tools by 9.3 percentage points, but the difference was not statistically significant (95% CI, -1.3 to 19.9). Hospitals with more processes to aid dissemination of best patient care practices were also more likely to adopt EHR-based decision-support tools for preeclampsia (0.4 percentage points; 95% CI, 0.1 to 0.6, for every 1-unit increase in dissemination processes; P < .01).ConclusionStandardized EHRs and policies to disseminate evidence are foundational hospital capabilities that can help advance the use of EHR-based decision support tools for preeclampsia management in the approximately one-third of US hospitals that still do not use them.
Project description:BackgroundIn prehospital emergency care, providers face significant challenges in making informed decisions due to factors such as limited cognitive support, high-stress environments, and lack of experience with certain patient conditions. Effective Clinical Decision Support Systems (CDSS) have great potential to alleviate these challenges. However, such systems have not yet been widely adopted in real-world practice and have been found to cause workflow disruptions and usability issues. Therefore, it is critical to investigate how to design CDSS that meet the needs of prehospital providers while accounting for the unique characteristics of prehospital workflows.MethodsWe conducted semi-structured interviews with 20 prehospital providers recruited from four Emergency Medical Services (EMS) agencies in an urban area in the northeastern U.S. The interviews focused on the decision-making challenges faced by prehospital providers, their technological needs for decision support, and key considerations for the design and implementation of a CDSS that can seamlessly integrate into prehospital care workflows. The data were analyzed using content analysis to identify common themes.ResultsOur qualitative study identified several challenges in prehospital decision-making, including limited access to diagnostic tools, insufficient experience with certain critical patient conditions, and a lack of cognitive support. Participants highlighted several desired features to make CDSS more effective in the dynamic, hands-busy, and cognitively demanding prehospital context, such as automatic prompts for possible patient conditions and treatment options, alerts for critical patient safety events, AI-powered medication identification, and easy retrieval of protocols using hands-free methods (e.g., voice commands). Key considerations for successful CDSS adoption included balancing the frequency and urgency of alerts to reduce alarm fatigue and workflow disruptions, facilitating real-time data collection and documentation to enable decision generation, and ensuring trust and accountability while preventing over-reliance when using CDSS.ConclusionThis study provides empirical insights into the challenges and user needs in prehospital decision-making and offers practical and system design implications for addressing these issues.
Project description:Objective: Although clinical decision support systems (CDSS) have many benefits for clinical practice, they also have several barriers to their acceptance by professionals. Our objective in this study was to design and validate The Aleph palliative care (PC) CDSS through a user-centred method, considering the predictions of the artificial intelligence (AI) core, usability and user experience (UX). Methods: We performed two rounds of individual evaluation sessions with potential users. Each session included a model evaluation, a task test and a usability and UX assessment. Results: The machine learning (ML) predictive models outperformed the participants in the three predictive tasks. System Usability Scale (SUS) reported 62.7 ± 14.1 and 65 ± 26.2 on a 100-point rating scale for both rounds, respectively, while User Experience Questionnaire – Short Version (UEQ-S) scores were 1.42 and 1.5 on the −3 to 3 scale. Conclusions: The think-aloud method and including the UX dimension helped us to identify most of the workflow implementation issues. The system has good UX hedonic qualities; participants were interested in the tool and responded positively to it. Performance regarding usability was modest but acceptable.
Project description:BackgroundThis project engages patients and physicians in the development of Decision Boxes, short clinical topic summaries covering medical questions that have no single best answer. Decision Boxes aim to prepare the clinician to communicate the risks and benefits of the available options to the patient so they can make an informed decision together.MethodsSeven researchers (including four practicing family physicians) selected 10 clinical topics relevant to primary care practice through a Delphi survey. We then developed two one-page prototypes on two of these topics: prostate cancer screening with the prostate-specific antigen test, and prenatal screening for trisomy 21 with the serum integrated test. We presented the prototypes to purposeful samples of family physicians distributed in two focus groups, and patients distributed in four focus groups. We used the User Experience Honeycomb to explore barriers and facilitators to the communication design used in Decision Boxes. All discussions were transcribed, and three researchers proceeded to thematic content analysis of the transcriptions. The coding scheme was first developed from the Honeycomb's seven themes (valuable, usable, credible, useful, desirable, accessible, and findable), and included new themes suggested by the data. Prototypes were modified in light of our findings.ResultsThree rounds were necessary for a majority of researchers to select 10 clinical topics. Fifteen physicians and 33 patients participated in the focus groups. Following analyses, three sections were added to the Decision Boxes: introduction, patient counseling, and references. The information was spread to two pages to try to make the Decision Boxes less busy and improve users' first impression. To try to improve credibility, we gave more visibility to the research institutions involved in development. A statement on the boxes' purpose and a flow chart representing the shared decision-making process were added with the intent of clarifying the tool's purpose. Information about the risks and benefits according to risk levels was added to the Decision Boxes, to try to ease the adaptation of the information to individual patients.ConclusionResults will guide the development of the eight remaining Decision Boxes. A future study will evaluate the effect of Decision Boxes on the integration of evidence-based and shared decision making principles in clinical practice.
Project description:Decision-support tools (DSTs) synthesize complex information to assist environmental managers in the decision-making process. Here, we review DSTs applied in the Baltic Sea area, to investigate how well the ecosystem approach is reflected in them, how different environmental problems are covered, and how well the tools meet the needs of the end users. The DSTs were evaluated based on (i) a set of performance criteria, (ii) information on end user preferences, (iii) how end users had been involved in tool development, and (iv) what experiences developers/hosts had on the use of the tools. We found that DSTs frequently addressed management needs related to eutrophication, biodiversity loss, or contaminant pollution. The majority of the DSTs addressed human activities, their pressures, or environmental status changes, but they seldom provided solutions for a complete ecosystem approach. In general, the DSTs were scientifically documented and transparent, but confidence in the outputs was poorly communicated. End user preferences were, apart from the shortcomings in communicating uncertainty, well accounted for in the DSTs. Although end users were commonly consulted during the DST development phase, they were not usually part of the development team. Answers from developers/hosts indicate that DSTs are not applied to their full potential. Deeper involvement of end users in the development phase could potentially increase the value and impact of DSTs. As a way forward, we propose streamlining the outputs of specific DSTs, so that they can be combined to a holistic insight of the consequences of management actions and serve the ecosystem approach in a better manner.
Project description:BackgroundEmergency departments (EDs) frequently care for individuals with opioid use disorder (OUD). Buprenorphine (BUP) is an effective treatment option for patients with OUD that can safely be initiated in the ED. At present, BUP is rarely initiated as a part of routine ED care. Clinical decision support (CDS) could accelerate adoption of ED-initiated BUP into routine emergency care.ObjectiveThis study aimed to design and formatively evaluate a user-centered decision support tool for ED initiation of BUP for patients with OUD.MethodsUser-centered design with iterative prototype development was used. Initial observations and interviews identified workflows and information needs. The design team and key stakeholders reviewed prototype designs to ensure accuracy. A total of 5 prototypes were evaluated and iteratively refined based on input from 26 attending and resident physicians.ResultsEarly feedback identified concerns with the initial CDS design: an alert with several screens. The timing of the alert led to quick dismissal without using the tool. User feedback on subsequent iterations informed the development of a flexible tool to support clinicians with varied levels of experience with the intervention by providing both one-click options for direct activation of care pathways and user-activated support for critical decision points. The final design resolved challenging navigation issues through targeted placement, color, and design of the decision support modules and care pathways. In final testing, users expressed that the tool could be easily learned without training and was reasonable for use during routine emergency care.ConclusionsA user-centered design process helped designers to better understand users' needs for a Web-based clinical decision tool to support ED initiation of BUP for OUD. The process identified varying needs across user experience and familiarity with the protocol, leading to a flexible design supporting both direct care pathways and user-initiated decision support.
Project description:Background and significanceFalls in community-dwelling older adults are common, and there is a lack of clinical decision support (CDS) to provide health care providers with effective, individualized fall prevention recommendations.ObjectivesThe goal of this research is to identify end-user (primary care staff and patients) needs through a human-centered design process for a tool that will generate CDS to protect older adults from falls and injuries.MethodsPrimary care staff (primary care providers, care coordinator nurses, licensed practical nurses, and medical assistants) and community-dwelling patients aged 60 years or older associated with Brigham & Women's Hospital-affiliated primary care clinics and the University of Florida Health Archer Family Health Care primary care clinic were eligible to participate in this study. Through semi-structured and exploratory interviews with participants, our team identified end-user needs through content analysis.ResultsUser needs for primary care staff (n = 24) and patients (n = 18) were categorized under the following themes: workload burden; systematic communication; in-person assessment of patient condition; personal support networks; motivational tools; patient understanding of fall risk; individualized resources; and evidence-based safe exercises and expert guidance. While some of these themes are specific to either primary care staff or patients, several address needs expressed by both groups of end-users.ConclusionOur findings suggest that there are many care gaps in fall prevention management in primary care and that personalized, actionable, and evidence-based CDS has the potential to address some of these gaps.
Project description:IntroductionThe purpose of this study was to explore nurses' perspectives on Machine Learning Clinical Decision Support (ML CDS) design, development, implementation, and adoption.DesignQualitative descriptive study.MethodsNurses (n = 17) participated in semi-structured interviews. Data were transcribed, coded, and analyzed using Thematic analysis methods as described by Braun and Clarke.ResultsFour major themes and 14 sub-themes highlight nurses' perspectives on autonomy in decision-making, the influence of prior experience in shaping their preferences for use of novel CDS tools, the need for clarity in why ML CDS is useful in improving practice/outcomes, and their desire to have nursing integrated in design and implementation of these tools.ConclusionThis study provided insights into nurse perceptions regarding the utility and usability of ML CDS as well as the influence of previous experiences with technology and CDS, change management strategies needed at the time of implementation of ML CDS, the importance of nurse-perceived engagement in the development process, nurse information needs at the time of ML CDS deployment, and the perceived impact of ML CDS on nurse decision making autonomy.Clinical relevanceThis study contributes to the body of knowledge about the use of AI and machine learning (ML) in nursing practice. Through generation of insights drawn from nurses' perspectives, these findings can inform successful design and adoption of ML Clinical Decision Support.
Project description:Pharmacogenomic (PGx) testing is gaining recognition from physicians, pharmacists and patients as a tool for evidence-based medication management. However, seemingly similar PGx testing panels (and PGx-based decision support tools) can diverge in their technological specifications, as well as the genetic factors that determine test specificity and sensitivity, and hence offer different values for users. Reluctance to embrace PGx testing is often the result of unfamiliarity with PGx technology, a lack of knowledge about the availability of curated guidelines/evidence for drug dosing recommendations, and an absence of wide-spread institutional implementation efforts and educational support. Demystifying an often confusing and variable PGx marketplace can lead to greater acceptance of PGx as a standard-of-care practice that improves drug outcomes and provides a lifetime value for patients. Here, we highlight the key underlying factors of a PGx test that should be considered, and discuss the current progress of PGx implementation.
Project description:ObjectiveDespite the benefits of the tailored drug-drug interaction (DDI) alerts and the broad dissemination strategy, the uptake of our tailored DDI alert algorithms that are enhanced with patient-specific and context-specific factors has been limited. The goal of the study was to examine barriers and health care system dynamics related to implementing tailored DDI alerts and identify the factors that would drive optimization and improvement of DDI alerts.MethodsWe employed a qualitative research approach, conducting interviews with a participant interview guide framed based on Proctor's taxonomy of implementation outcomes and informed by the Theoretical Domains Framework. Participants included pharmacists with informatics roles within hospitals, chief medical informatics officers, and associate medical informatics directors/officers. Our data analysis was informed by the technique used in grounded theory analysis, and the reporting of open coding results was based on a modified version of the Safety-Related Electronic Health Record Research Reporting Framework.ResultsOur analysis generated 15 barriers, and we mapped the interconnections of these barriers, which clustered around three entities (i.e., users, organizations, and technical stakeholders). Our findings revealed that misaligned interests regarding DDI alert performance and misaligned expectations regarding DDI alert optimizations among these entities within health care organizations could result in system inertia in implementing tailored DDI alerts.ConclusionHealth care organizations primarily determine the implementation and optimization of DDI alerts, and it is essential to identify and demonstrate value metrics that health care organizations prioritize to enable tailored DDI alert implementation. This could be achieved via a multifaceted approach, such as partnering with health care organizations that have the capacity to adopt tailored DDI alerts and identifying specialists who know users' needs, liaise with organizations and vendors, and facilitate technical stakeholders' work. In the future, researchers can adopt the systematic approach to study tailored DDI implementation problems from other system perspectives (e.g., the vendors' system).