A novel thymidine phosphorylase to synthesize (halogenated) anticancer and antiviral nucleoside drugs in continuous flow† † Electronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d2cy00751g
Ontology highlight
ABSTRACT: Four pharmaceutically relevant nucleoside analogues (5-fluoro-2′-deoxyuridine, 5-chloro-2′-deoxyuridine, 5-bromo-2′-deoxyuridine, and 5-iodo-2′-deoxyuridine) have been synthesized by using a novel thymidine phosphorylase from the halotolerant H. elongata (HeTP). Following enzyme immobilization on microbeads, the biocatalyst was implemented as a packed-bed reactor for the continuous production of halogenated nucleosides, achieving up to 90% conversion at the 10 mM scale with 30 min residence time. Taking the synthesis of floxuridine (5-fluoro-2′-deoxyuridine) as a study case, we obtained the highest space–time yield (5.5 g L−1 h−1) reported to date. In addition, bioinformatic tools such as MD analysis and CapiPy have contributed to shine light on the catalytic performance of HeTP as well as its immobilization, respectively. A novel thymidine phosphorylase from H. elongata has been characterized, immobilized, and applied in a flow reactor. With this biocatalyst, four halogenated nucleoside analogues with anticancer and antiviral properties were produced in high yields.
SUBMITTER: Benitez-Mateos A
PROVIDER: S-EPMC9575728 | biostudies-literature | 2022 Aug
REPOSITORIES: biostudies-literature
ACCESS DATA