Unknown

Dataset Information

0

A medium-entropy transition metal oxide cathode for high-capacity lithium metal batteries.


ABSTRACT: The limited capacity of the positive electrode active material in non-aqueous rechargeable lithium-based batteries acts as a stumbling block for developing high-energy storage devices. Although lithium transition metal oxides are high-capacity electrochemical active materials, the structural instability at high cell voltages (e.g., >4.3 V) detrimentally affects the battery performance. Here, to circumvent this issue, we propose a Li1.46Ni0.32Mn1.2O4-x (0 < x < 4) material capable of forming a medium-entropy state spinel phase with partial cation disordering after initial delithiation. Via physicochemical measurements and theoretical calculations, we demonstrate the structural disorder in delithiated Li1.46Ni0.32Mn1.2O4-x, the direct shuttling of Li ions from octahedral sites to the spinel structure and the charge-compensation Mn3+/Mn4+ cationic redox mechanism after the initial delithiation. When tested in a coin cell configuration in combination with a Li metal anode and a LiPF6-based non-aqueous electrolyte, the Li1.46Ni0.32Mn1.2O4-x-based positive electrode enables a discharge capacity of 314.1 mA h g-1 at 100 mA g-1 with an average cell discharge voltage of about 3.2 V at 25 ± 5 °C, which results in a calculated initial specific energy of 999.3 Wh kg-1 (based on mass of positive electrode's active material).

SUBMITTER: Pei Y 

PROVIDER: S-EPMC9579144 | biostudies-literature | 2022 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

A medium-entropy transition metal oxide cathode for high-capacity lithium metal batteries.

Pei Yi Y   Chen Qing Q   Wang Meiyu M   Zhang Pengjun P   Ren Qingyong Q   Qin Jingkai J   Xiao Penghao P   Song Li L   Chen Yu Y   Yin Wen W   Tong Xin X   Zhen Liang L   Wang Peng P   Xu Cheng-Yan CY  

Nature communications 20221018 1


The limited capacity of the positive electrode active material in non-aqueous rechargeable lithium-based batteries acts as a stumbling block for developing high-energy storage devices. Although lithium transition metal oxides are high-capacity electrochemical active materials, the structural instability at high cell voltages (e.g., >4.3 V) detrimentally affects the battery performance. Here, to circumvent this issue, we propose a Li<sub>1.46</sub>Ni<sub>0.32</sub>Mn<sub>1.2</sub>O<sub>4-x</sub>  ...[more]

Similar Datasets

| S-EPMC5492421 | biostudies-literature
| S-EPMC9056570 | biostudies-literature
| S-EPMC9789084 | biostudies-literature
| S-EPMC10635981 | biostudies-literature
| S-EPMC5984539 | biostudies-literature
| S-EPMC11320655 | biostudies-literature
| S-EPMC9918526 | biostudies-literature
| S-EPMC6856152 | biostudies-literature
| S-EPMC9056563 | biostudies-literature
| S-EPMC9247978 | biostudies-literature