Unknown

Dataset Information

0

Discovery of MAO-B Inhibitor with Machine Learning, Topomer CoMFA, Molecular Docking and Multi-Spectroscopy Approaches.


ABSTRACT: Alzheimer's disease (AD) is the most common type of dementia and is a serious disruption to normal life. Monoamine oxidase-B (MAO-B) is an important target for the treatment of AD. In this study, machine learning approaches were applied to investigate the identification model of MAO-B inhibitors. The results showed that the identification model for MAO-B inhibitors with K-nearest neighbor(KNN) algorithm had a prediction accuracy of 94.1% and 88.0% for the 10-fold cross-validation test and the independent test set, respectively. Secondly, a quantitative activity prediction model for MAO-B was investigated with the Topomer CoMFA model. Two separate cutting mode approaches were used to predict the activity of MAO-B inhibitors. The results showed that the cut model with q2 = 0.612 (cross-validated correlation coefficient) and r2 = 0.824 (non-cross-validated correlation coefficient) were determined for the training and test sets, respectively. In addition, molecular docking was employed to analyze the interaction between MAO-B and inhibitors. Finally, based on our proposed prediction model, 1-(4-hydroxyphenyl)-3-(2,4,6-trimethoxyphenyl)propan-1-one (LB) was predicted as a potential MAO-B inhibitor and was validated by a multi-spectroscopic approach including fluorescence spectra and ultraviolet spectrophotometry.

SUBMITTER: Zheng L 

PROVIDER: S-EPMC9599443 | biostudies-literature | 2022 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Discovery of MAO-B Inhibitor with Machine Learning, Topomer CoMFA, Molecular Docking and Multi-Spectroscopy Approaches.

Zheng Linfeng L   Qin Xiangyang X   Wang Jiao J   Zhang Mengying M   An Quanlin Q   Xu Jinzhi J   Qu Xiaosheng X   Cao Xin X   Niu Bing B  

Biomolecules 20221013 10


Alzheimer's disease (AD) is the most common type of dementia and is a serious disruption to normal life. Monoamine oxidase-B (MAO-B) is an important target for the treatment of AD. In this study, machine learning approaches were applied to investigate the identification model of MAO-B inhibitors. The results showed that the identification model for MAO-B inhibitors with K-nearest neighbor(KNN) algorithm had a prediction accuracy of 94.1% and 88.0% for the 10-fold cross-validation test and the in  ...[more]

Similar Datasets

| S-EPMC10981835 | biostudies-literature
| S-EPMC6305694 | biostudies-literature
| S-EPMC5875935 | biostudies-literature
| S-EPMC9956102 | biostudies-literature
| S-EPMC4264174 | biostudies-literature
| S-EPMC9066360 | biostudies-literature
| S-EPMC7815257 | biostudies-literature
| S-EPMC4006998 | biostudies-literature
| S-EPMC4057748 | biostudies-literature
| S-EPMC11493617 | biostudies-literature