Unknown

Dataset Information

0

ACP-ADA: A Boosting Method with Data Augmentation for Improved Prediction of Anticancer Peptides.


ABSTRACT: Cancer is the second-leading cause of death worldwide, and therapeutic peptides that target and destroy cancer cells have received a great deal of interest in recent years. Traditional wet experiments are expensive and inefficient for identifying novel anticancer peptides; therefore, the development of an effective computational approach is essential to recognize ACP candidates before experimental methods are used. In this study, we proposed an Ada-boosting algorithm with the base learner random forest called ACP-ADA, which integrates binary profile feature, amino acid index, and amino acid composition with a 210-dimensional feature space vector to represent the peptides. Training samples in the feature space were augmented to increase the sample size and further improve the performance of the model in the case of insufficient samples. Furthermore, we used five-fold cross-validation to find model parameters, and the cross-validation results showed that ACP-ADA outperforms existing methods for this feature combination with data augmentation in terms of performance metrics. Specifically, ACP-ADA recorded an average accuracy of 86.4% and a Mathew's correlation coefficient of 74.01% for dataset ACP740 and 90.83% and 81.65% for dataset ACP240; consequently, it can be a very useful tool in drug development and biomedical research.

SUBMITTER: Bhattarai S 

PROVIDER: S-EPMC9603247 | biostudies-literature | 2022 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

ACP-ADA: A Boosting Method with Data Augmentation for Improved Prediction of Anticancer Peptides.

Bhattarai Sadik S   Kim Kyu-Sik KS   Tayara Hilal H   Chong Kil To KT  

International journal of molecular sciences 20221013 20


Cancer is the second-leading cause of death worldwide, and therapeutic peptides that target and destroy cancer cells have received a great deal of interest in recent years. Traditional wet experiments are expensive and inefficient for identifying novel anticancer peptides; therefore, the development of an effective computational approach is essential to recognize ACP candidates before experimental methods are used. In this study, we proposed an Ada-boosting algorithm with the base learner random  ...[more]

Similar Datasets

| S-EPMC9556613 | biostudies-literature
| S-EPMC7862624 | biostudies-literature
| S-EPMC11410379 | biostudies-literature
| S-EPMC8654959 | biostudies-literature
| S-EPMC11361855 | biostudies-literature
| S-EPMC10357387 | biostudies-literature
| S-EPMC11323142 | biostudies-literature
| S-EPMC5652333 | biostudies-literature
| S-EPMC7403773 | biostudies-literature
| S-EPMC8926351 | biostudies-literature