Project description:The lack of understanding of the molecular-scale water adsorbed on TiO2 surfaces under ambient conditions has become a major obstacle for solving the long-time scientific and applications issues, such as the photo-induced wetting phenomenon and designing novel advanced TiO2-based materials. Here, with the molecular dynamics simulation, we identified an ordered water bilayer structure with a two-dimensional hydrogen bonding network on a rutile TiO2(110) surface at ambient temperature, corroborated by vibrational sum-frequency generation spectroscopy. The reduced number of hydrogen bonds between the water bilayer and water droplet results in a notable water contact angle (25 ± 5°) of the pristine TiO2 surface. This surface hydrophobicity can be enhanced by the adsorption of the formate/acetate molecules, and diminishes with dissociated H2O molecules. Our new physical framework well explained the long-time controversy on the origin of the hydrophobicity/hydrophilicity of the TiO2 surface, thus help understanding the efficiency of TiO2 devices in producing electrical energy of solar cells and the photo-oxidation of organic pollutants.
Project description:Interaction of molecular oxygen with semiconducting oxide surfaces plays a key role in many technologies. The topic is difficult to approach both by experiment and in theory, mainly due to multiple stable charge states, adsorption configurations, and reaction channels of adsorbed oxygen species. Here we use a combination of noncontact atomic force microscopy (AFM) and density functional theory (DFT) to resolve [Formula: see text] adsorption on the rutile [Formula: see text](110) surface, which presents a longstanding challenge in the surface chemistry of metal oxides. We show that chemically inert AFM tips terminated by an oxygen adatom provide excellent resolution of both the adsorbed species and the oxygen sublattice of the substrate. Adsorbed [Formula: see text] molecules can accept either one or two electron polarons from the surface, forming superoxo or peroxo species. The peroxo state is energetically preferred under any conditions relevant for applications. The possibility of nonintrusive imaging allows us to explain behavior related to electron/hole injection from the tip, interaction with UV light, and the effect of thermal annealing.
Project description:The polaron introduced by the oxygen vacancy (Vo) dominates many surface adsorption processes and chemical reactions on reduced oxide surfaces. Based on IR spectra and DFT calculations of NO and CO adsorption, we gave two scenarios of polaron-involved molecular adsorption on reduced TiO2(110) surfaces. For NO adsorption, the subsurface polaron electron transfers to a Ti:3d-NO:2p hybrid orbital mainly on NO, leading to the large redshifts of vibration frequencies of NO. For CO adsorption, the polaron only transfers to a Ti:3d state of the surface Ti5c cation underneath CO, and thus only a weak shift of vibration frequency of CO was observed. These scenarios are determined by the energy-level matching between the polaron state and the LUMO of adsorbed molecules, which plays a crucial role in polaron-adsorbate interaction and related catalytic reactions on reduced oxide surfaces.
Project description:The adsorption behavior of tin phthalocyanine (SnPc) molecules on rutile TiO2(110) was studied by scanning tunneling microscopy (STM). Low-temperature STM measurements of single molecules reveal the coexistence of two conformations of molecules on the TiO2 surface. Density functional theory-based simulations (DFT) indicate that the difference originates from the position of the tin atom protruding from the molecule plane. The irreversible switching of Sn-up molecules into the Sn-down conformation was observed either after sample annealing at 200 °C or as a result of tip-induced manipulation. Room-temperature measurements conducted for a coverage of close to a monolayer showed no tendency for molecular arrangement.
Project description:Polarons play a major role in determining the chemical properties of transition-metal oxides. Recent experiments show that adsorbates can attract inner polarons to surface sites. These findings require an atomistic understanding of the adsorbate influence on polaron dynamics and lifetime. We consider reduced rutile TiO2(110) with an oxygen vacancy as a prototypical surface and a CO molecule as a classic probe and perform ab initio adiabatic molecular dynamics, time-domain density functional theory, and nonadiabatic molecular dynamics simulations. The simulations show that subsurface polarons have little influence on CO adsorption and CO can desorb easily. On the contrary, surface polarons strongly enhance CO adsorption. At the same time, the adsorbed CO attracts polarons to the surface, allowing them to participate in catalytic processes with CO. The CO interaction with polarons changes their orbital origin, suppresses polaron hopping, and stabilizes them at surface sites. Partial delocalization of polarons onto CO decouples them from free holes, decreasing the nonadiabatic coupling and shortening the quantum coherence time, thereby reducing charge recombination. The calculations demonstrate that CO prefers to adsorb at the next-nearest-neighbor five-coordinated Ti3+ surface electron polaron sites. The reported results provide a fundamental understanding of the influence of electron polarons on the initial stage of reactant adsorption and the effect of the adsorbate-polaron interaction on the polaron dynamics and lifetime. The study demonstrates how charge and polaron properties can be controlled by adsorbed species, allowing one to design high-performance transition-metal oxide catalysts.
Project description:The modification of the rutile TiO2(110) surface with dopamine represents the best example of the functionalization of TiO2-based nanoparticles with catecholamines, which is of great interest for sunlight harvesting and drug delivery. However, there is little information on the dopamine-TiO2(110) adsorption complex in terms of thermodynamic properties and structural parameters such as bond coordination and orientation of the terminal ethyl-amino group. Here, we report a density functional theory (DFT) investigation of dopamine adsorption on the TiO2(110) surface using the optB86b-vdW functional with a Hubbard-type correction to the Ti 3d orbitals, where U eff = 3 eV. Guided by available X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS) data, our simulations identify enolate species with bidentate coordination at a submonolayer coverage, which are bonded to two neighboring 5-fold-coordinated Ti atoms at the TiO2(110) surface through both deprotonated oxygen atoms of the dopamine, i.e., in a bridging fashion. The process is highly exothermic, involving an adsorption energy of -2.90 eV. Calculated structural parameters suggest that the molecule sits approximately upright on the surface with the amino group interacting with the π-like orbitals of the aromatic ring, leading to a gauche-like configuration. The resulting NH···π hydrogen bond in this configuration can be broken by overcoming an energy barrier of 0.22 eV; in this way, the amino group rotation leads to an anti-like conformation, making this terminal group able to bind to other biomolecules. This mechanism is endothermic by 0.07 eV. Comparison of existing spectroscopic data with DFT modeling shows that our computational setup can reproduce most experimentally determined parameters such as tilt angles from NEXAFS and chemical shifts in XPS, which allows us to identify the preferred mode of adsorption of dopamine on the TiO2(110) surface.
Project description:The reconstruction of rutile TiO2 (110) holds significant importance as it profoundly influences the surface chemistry and catalytic properties of this widely used material in various applications, from photocatalysis to solar energy conversion. Here, we directly observe the asymmetric surface reconstruction of rutile TiO2 (110)-(1×2) with atomic-resolution using in situ spherical aberration-corrected scanning transmission electron microscopy. Density functional theory calculations were employed to complement the experimental observations. Our findings highlight the pivotal role played by repulsive electrostatic interaction among the small polarons -formed by excess electrons following the removal of neutral oxygen atoms- and the subsequent surface relaxations induced by these polarons. The emergence and disappearance of these asymmetric structures can be controlled by adjusting the oxygen partial pressure. This research provides a deeper understanding, prediction, and manipulation of the surface reconstructions of rutile TiO2 (110), holding implications for a diverse range of applications and technological advancements involving rutile-based materials.
Project description:Surface X-ray diffraction has been employed to quantitatively determine the geometric structure of an X-ray-induced superhydrophilic rutile-TiO2(110)(1 × 1) surface. A scatterer, assumed to be oxygen, is found at a distance of 1.90 ± 0.02 Å above the five-fold-coordinated surface Ti atom, indicating surface hydroxylation. Two more oxygen atoms, situated further from the substrate, are also included to achieve the optimal agreement between experimental and simulated diffraction data. It is concluded that these latter scatterers are from water molecules, surface-localized through hydrogen bonding. Comparing this interfacial structure with previous studies suggests that the superhydophilicity of titania is most likely to be a result of the depletion of surface carbon contamination coupled to extensive surface hydroxylation.
Project description:Titanium dioxide (TiO2) has been extensively studied as a suitable material for a wide range of fields including catalysis and sensing. For example, TiO2-based nanoparticles are active in the catalytic conversion of glucose into value-added chemicals, while the good biocompatibility of titania allows for its application in innovative biosensing devices for glucose detection. A key process for efficient and selective biosensors and catalysts is the interaction and binding mode between the analyte and the sensor/catalyst surface. The relevant features regard both the molecular recognition event and its effects on the nanoparticle electronic structure. In this work, we address both these features by combining two first-principles methods based on periodic boundary conditions and cluster approaches (CAs). While the former allows for the investigation of extended materials and surfaces, CAs focus only on a local region of the surface but allow for using hybrid functionals with low computational cost, leading to a highly accurate description of electronic properties. Moreover, the CA is suitable for the study of reaction mechanisms and charged systems, which can be cumbersome with PBC. Here, a direct and detailed comparison of the two computational methodologies is applied for the investigation of d-glucose on the TiO2 (100) anatase surface. As an alternative to the commonly used PBC calculations, the CA is successfully exploited to characterize the formation of surface and subsurface oxygen vacancies and to determine their decisive role in d-glucose adsorption. The results of such direct comparison allow for the selection of an efficient, finite-size structural model that is suitable for future investigations of biosensor electrocatalytic processes and biomass conversion catalysis.
Project description:The interaction of water with oxide surfaces is of great interest for both fundamental science and applications. We present a combined theoretical (density functional theory (DFT)) and experimental (scanning tunneling microscopy (STM) and photoemission spectroscopy (PES)) study of water interaction with the two-dimensional titania overlayer that terminates the SrTiO3(110)-(4 × 1) surface and consists of TiO4 tetrahedra. STM and core-level and valence band PES show that H2O neither adsorbs nor dissociates on the stoichiometric surface at room temperature, whereas it does dissociate at oxygen vacancies. This is in agreement with DFT calculations, which show that the energy barriers for water dissociation on the stoichiometric and reduced surfaces are 1.7 and 0.9 eV, respectively. We propose that water weakly adsorbs on two-dimensional, tetrahedrally coordinated overlayers.