Unknown

Dataset Information

0

Identification of the major QTL QPm.cas-7D for adult plant resistance to wheat powdery mildew.


ABSTRACT: Developing effective and durable host plant resistance is crucial for controlling powdery mildew, a devastating disease caused by Blumeria graminis f. sp. tritici (Bgt). In the present study, we dissected the genetic basis of the adult plant resistance to powdery mildew using a recombinant inbred line (RIL) composed of 176 F9 RILs population derived from a cross between PuBing 3228 (P3228) and susceptible cultivar Gao 8901. P3228 exhibits stable adult-plant resistance to powdery mildew in the field over consecutive years. We identified two QTLs on chromosomes 7DS (QPm.cas-7D) and 1AL (QPm.cas-1A) contributed by P3228, and one QTL on 3DS (QPm.cas-3D) contributed by Gao 8901, which could explain 65.44%, 3.45%, and 2.18% of the phenotypic variances, respectively. By analyzing the annotated genes in the 1.168 Mb physical interval of the major QTL QPm.cas-7D, we locked a previously cloned adult-plant resistance gene Pm38 that was most probably the candidate gene of QPm.cas-7D. Sequence alignment analysis revealed that the candidate gene of QPm.cas-7D in P3228 was identical to the reported Pm38 sequence. Two haplotypes QPm-7D-R and QPm-7D-S were identified in the whole Pm38 genomic regions between P3228 and Gao 8901. To apply QPm.cas-7D in wheat breeding, we developed a kompetitive allele-specific PCR (KASP) marker Kasp5249 that is closely linked with these haplotypes. It is worth mentioning that the QPm-7D-R haplotype significantly decreased TKW and underwent negative selection for higher yields in China wheat breeding. In this study, we identified a major QTL QPm.cas-7D and revealed the relationship between its resistance and yield, which could be beneficial for further applications in wheat disease resistance and high-yield breeding.

SUBMITTER: Liu H 

PROVIDER: S-EPMC9627495 | biostudies-literature | 2022

REPOSITORIES: biostudies-literature

altmetric image

Publications

Identification of the major QTL <i>QPm.cas-7D</i> for adult plant resistance to wheat powdery mildew.

Liu Hong H   Han Guohao G   Gu Tiantian T   Jin Yuli Y   Shi Zhipeng Z   Xing Lixian L   Yan Hanwen H   Wang Jing J   Hao Chenyang C   Zhao Meicheng M   An Diaoguo D  

Frontiers in plant science 20221019


Developing effective and durable host plant resistance is crucial for controlling powdery mildew, a devastating disease caused by <i>Blumeria graminis</i> f. sp. <i>tritici</i> (<i>Bgt</i>). In the present study, we dissected the genetic basis of the adult plant resistance to powdery mildew using a recombinant inbred line (RIL) composed of 176 F<sub>9</sub> RILs population derived from a cross between PuBing 3228 (P3228) and susceptible cultivar Gao 8901. P3228 exhibits stable adult-plant resist  ...[more]

Similar Datasets

| S-EPMC5529384 | biostudies-literature
| S-EPMC6096635 | biostudies-literature
| S-EPMC10544919 | biostudies-literature
| S-EPMC11251950 | biostudies-literature
| S-EPMC8323325 | biostudies-literature
| S-EPMC11496114 | biostudies-literature
| S-EPMC8755695 | biostudies-literature
| S-EPMC7808266 | biostudies-literature
| S-EPMC10229466 | biostudies-literature
| S-EPMC9141293 | biostudies-literature