Unknown

Dataset Information

0

Deep autoencoder for interpretable tissue-adaptive deconvolution and cell-type-specific gene analysis.


ABSTRACT: Single-cell RNA-sequencing has become a powerful tool to study biologically significant characteristics at explicitly high resolution. However, its application on emerging data is currently limited by its intrinsic techniques. Here, we introduce Tissue-AdaPtive autoEncoder (TAPE), a deep learning method connecting bulk RNA-seq and single-cell RNA-seq to achieve precise deconvolution in a short time. By constructing an interpretable decoder and training under a unique scheme, TAPE can predict cell-type fractions and cell-type-specific gene expression tissue-adaptively. Compared with popular methods on several datasets, TAPE has a better overall performance and comparable accuracy at cell type level. Additionally, it is more robust among different cell types, faster, and sensitive to provide biologically meaningful predictions. Moreover, through the analysis of clinical data, TAPE shows its ability to predict cell-type-specific gene expression profiles with biological significance. We believe that TAPE will enable and accelerate the precise analysis of high-throughput clinical data in a wide range.

SUBMITTER: Chen Y 

PROVIDER: S-EPMC9641692 | biostudies-literature | 2022 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Deep autoencoder for interpretable tissue-adaptive deconvolution and cell-type-specific gene analysis.

Chen Yanshuo Y   Wang Yixuan Y   Chen Yuelong Y   Cheng Yuqi Y   Wei Yumeng Y   Li Yunxiang Y   Wang Jiuming J   Wei Yingying Y   Chan Ting-Fung TF   Li Yu Y  

Nature communications 20221108 1


Single-cell RNA-sequencing has become a powerful tool to study biologically significant characteristics at explicitly high resolution. However, its application on emerging data is currently limited by its intrinsic techniques. Here, we introduce Tissue-AdaPtive autoEncoder (TAPE), a deep learning method connecting bulk RNA-seq and single-cell RNA-seq to achieve precise deconvolution in a short time. By constructing an interpretable decoder and training under a unique scheme, TAPE can predict cel  ...[more]

Similar Datasets

2025-09-10 | GSE297720 | GEO
| PRJNA1265952 | ENA
| S-EPMC8772318 | biostudies-literature
| S-EPMC11423344 | biostudies-literature
| S-EPMC7803005 | biostudies-literature
| S-EPMC10030841 | biostudies-literature
| S-EPMC8114529 | biostudies-literature
| S-EPMC11488977 | biostudies-literature
| S-EPMC8769698 | biostudies-literature
| S-EPMC10625696 | biostudies-literature