Unknown

Dataset Information

0

Single cell sequencing reveals that CD39 inhibition mediates changes to the tumor microenvironment.


ABSTRACT: Single-cell sequencing technologies have noteworthily improved our understanding of the genetic map and molecular characteristics of bladder cancer (BC). Here we identify CD39 as a potential therapeutic target for BC via single-cell transcriptome analysis. In a subcutaneous tumor model and orthotopic bladder cancer model, inhibition of CD39 (CD39i) by sodium polyoxotungstate is able to limit the growth of BC and improve the overall survival of tumor-bearing mice. Via single cell RNA sequencing, we find that CD39i increase the intratumor NK cells, conventional type 1 dendritic cells (cDC1) and CD8 + T cells and decrease the Treg abundance. The antitumor effect and reprogramming of the tumor microenvironment are blockaded in both the NK cells depletion model and the cDC1-deficient Batf3-/- model. In addition, a significant synergistic effect is observed between CD39i and cisplatin, but the CD39i + anti-PD-L1 (or anti-PD1) strategy does not show any synergistic effects in the BC model. Our results confirm that CD39 is a potential target for the immune therapy of BC.

SUBMITTER: Liu L 

PROVIDER: S-EPMC9643495 | biostudies-literature | 2022 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Single cell sequencing reveals that CD39 inhibition mediates changes to the tumor microenvironment.

Liu Lilong L   Hou Yaxin Y   Deng Changqi C   Tao Zhen Z   Chen Zhaohui Z   Hu Junyi J   Chen Ke K  

Nature communications 20221108 1


Single-cell sequencing technologies have noteworthily improved our understanding of the genetic map and molecular characteristics of bladder cancer (BC). Here we identify CD39 as a potential therapeutic target for BC via single-cell transcriptome analysis. In a subcutaneous tumor model and orthotopic bladder cancer model, inhibition of CD39 (CD39i) by sodium polyoxotungstate is able to limit the growth of BC and improve the overall survival of tumor-bearing mice. Via single cell RNA sequencing,  ...[more]

Similar Datasets

| S-EPMC10272598 | biostudies-literature
| S-EPMC11875766 | biostudies-literature
| S-EPMC10236634 | biostudies-literature
| S-EPMC11788434 | biostudies-literature
| S-EPMC9354882 | biostudies-literature
| S-EPMC10667919 | biostudies-literature
| S-EPMC11534694 | biostudies-literature
| S-EPMC9925748 | biostudies-literature
| S-EPMC9709471 | biostudies-literature
| S-EPMC11923342 | biostudies-literature