Unknown

Dataset Information

0

Isolated Effects of Plasma Freezing versus Thawing on Metabolite Stability.


ABSTRACT: Freezing and thawing plasma samples is known to perturb metabolite stability. However, no study has systematically tested how different freezing and thawing methods affect plasma metabolite levels. The objective of this study was to isolate the effects of freezing from thawing on mouse plasma metabolite levels, by comparing a matrix of freezing and thawing conditions through 10 freeze-thaw cycles. We tested freezing with liquid nitrogen (LN2), at -80 °C, or at -20 °C, and thawing quickly in room temperature water or slowly on ice. Plasma samples were extracted and the relative abundance of 87 metabolites was obtained via liquid chromatography-mass spectrometry (LC-MS). Observed changes in metabolite abundance by treatment group correlated with the amount of time it took for samples to freeze or thaw. Thus, snap-freezing with LN2 and quick-thawing with water led to minimal changes in metabolite levels. Conversely, samples frozen at -20 °C exhibited the most changes in metabolite levels, likely because freezing required about 4 h, versus freezing instantaneously in LN2. Overall, our results show that plasma samples subjected to up to 10 cycles of LN2 snap-freezing with room temperature water quick-thawing exhibit remarkable metabolomic stability.

SUBMITTER: Buchanan JL 

PROVIDER: S-EPMC9693613 | biostudies-literature | 2022 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Isolated Effects of Plasma Freezing versus Thawing on Metabolite Stability.

Buchanan Jane L JL   Tormes Vaquerano Jovan J   Taylor Eric B EB  

Metabolites 20221111 11


Freezing and thawing plasma samples is known to perturb metabolite stability. However, no study has systematically tested how different freezing and thawing methods affect plasma metabolite levels. The objective of this study was to isolate the effects of freezing from thawing on mouse plasma metabolite levels, by comparing a matrix of freezing and thawing conditions through 10 freeze-thaw cycles. We tested freezing with liquid nitrogen (LN<sub>2</sub>), at -80 °C, or at -20 °C, and thawing quic  ...[more]

Similar Datasets

| S-EPMC9072373 | biostudies-literature
| S-EPMC7672085 | biostudies-literature
| S-EPMC7216480 | biostudies-literature
| S-EPMC8115648 | biostudies-literature
| S-EPMC11388451 | biostudies-literature
| S-EPMC8909336 | biostudies-literature
| S-EPMC7503228 | biostudies-literature
| S-EPMC5223256 | biostudies-literature
| S-EPMC8467096 | biostudies-literature
| S-EPMC5392536 | biostudies-literature