Unknown

Dataset Information

0

Formation of Highly Efficient Perovskite Solar Cells by Applying Li-Doped CuSCN Hole Conductor and Interface Treatment.


ABSTRACT: Li-doped CuSCN films of various compositions were applied as hole-transporting material (HTM) for mesoscopic perovskite solar cells (PSCs). Those films of ~60 nm thickness, spin-coated on the perovskite layer, exhibit significantly higher crystallinity and hole mobility compared with the pristine CuSCN films. Among them, 0.33% Li-doped CuSCN (Li0.33:CuSCN) shows the best performance as the HTM of mesoscopic PSC. Furthermore, by depositing a slight amount of PCPDTBT over the Li0.33:CuSCN layer, the VOC was increased to 1.075 V, resulting in an average PCE of 20.24% and 20.65% for the champion device. These PCE and VOC values are comparable to those of PSC using spiro-OMETAD (PCE: 20.61%, VOC: 1.089 V). Such a remarkable increase can be attributed to the penetration of the PCPDTBT polymer into the grain boundaries of the Li0.33:CuSCN film, and to the interface with the perovskite layer, leading to the removal of defects on the perovskite surface by paving the non-contacting parts, as well as to the tight interconnection of the Li0.33:CuSCN grains. The PSC device with Li0.33:CuSCN showed a high long-term stability similar to that with bare CuSCN, and the introduction of PCPDTBT onto the perovskite/Li0.33:CuSCN further improved device stability, exhibiting 94% of the initial PCE after 100 days.

SUBMITTER: Yang IS 

PROVIDER: S-EPMC9698157 | biostudies-literature | 2022 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Formation of Highly Efficient Perovskite Solar Cells by Applying Li-Doped CuSCN Hole Conductor and Interface Treatment.

Yang In Seok IS   Park You Jin YJ   Hwang Yujin Y   Yang Hoi Chang HC   Kim Jeongho J   Lee Wan In WI  

Nanomaterials (Basel, Switzerland) 20221110 22


Li-doped CuSCN films of various compositions were applied as hole-transporting material (HTM) for mesoscopic perovskite solar cells (PSCs). Those films of ~60 nm thickness, spin-coated on the perovskite layer, exhibit significantly higher crystallinity and hole mobility compared with the pristine CuSCN films. Among them, 0.33% Li-doped CuSCN (Li0.33:CuSCN) shows the best performance as the HTM of mesoscopic PSC. Furthermore, by depositing a slight amount of PCPDTBT over the Li0.33:CuSCN layer, t  ...[more]

Similar Datasets

| S-EPMC11197800 | biostudies-literature
| S-EPMC9056886 | biostudies-literature
| S-EPMC9608381 | biostudies-literature
| S-EPMC9183099 | biostudies-literature
| S-EPMC10875638 | biostudies-literature
| S-EPMC7341082 | biostudies-literature
| S-EPMC6641240 | biostudies-literature
| S-EPMC9379778 | biostudies-literature
| S-EPMC11335880 | biostudies-literature
| S-EPMC8012559 | biostudies-literature