Unknown

Dataset Information

0

Systematic uncertainty due to background-gas collisions in trapped-ion optical clocks.


ABSTRACT: We describe a framework for calculating the frequency shift and uncertainty of trapped-ion optical atomic clocks caused by background-gas collisions, and apply this framework to an 27Al+ clock to enable a total fractional systematic uncertainty below 10-18. For this clock, with 38(19) nPa of room-temperature H2 background gas, we find that collisional heating generates a non-thermal distribution of motional states with a mean time-dilation shift of order 10-16 at the end of a 150 ms probe, which is not detected by sideband thermometry energy measurements. However, the contribution of collisional heating to the spectroscopy signal is highly suppressed and we calculate the BGC shift to be -0.6(2.4) × 10-19, where the shift is due to collisional heating time dilation and the uncertainty is dominated by the worst case ±π/2 bound used for collisional phase shift of the 27Al+ superposition state. We experimentally validate the framework and determine the background-gas pressure in situ using measurements of the rate of collisions that cause reordering of mixed-species ion pairs.

SUBMITTER: Hankin AM 

PROVIDER: S-EPMC9706596 | biostudies-literature | 2019 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Systematic uncertainty due to background-gas collisions in trapped-ion optical clocks.

Hankin A M AM   Clements E R ER   Huang Y Y   Brewer S M SM   Chen J-S JS   Chou C W CW   Hume D B DB   Leibrandt D R DR  

Physical review. A 20190901 3


We describe a framework for calculating the frequency shift and uncertainty of trapped-ion optical atomic clocks caused by background-gas collisions, and apply this framework to an <sup>27</sup>Al<sup>+</sup> clock to enable a total fractional systematic uncertainty below 10<sup>-18</sup>. For this clock, with 38(19) nPa of room-temperature H<sub>2</sub> background gas, we find that collisional heating generates a non-thermal distribution of motional states with a mean time-dilation shift of ord  ...[more]

Similar Datasets

| S-EPMC6669196 | biostudies-literature
| S-EPMC5873044 | biostudies-literature
| S-EPMC11043038 | biostudies-literature
| S-EPMC6675019 | biostudies-literature
| S-EPMC11335750 | biostudies-literature
| S-EPMC4987526 | biostudies-literature
| S-EPMC4144823 | biostudies-literature
| S-EPMC6099509 | biostudies-literature
| S-EPMC4334938 | biostudies-other
| S-EPMC11577666 | biostudies-literature