Unknown

Dataset Information

0

Federated learning enables big data for rare cancer boundary detection.


ABSTRACT: Although machine learning (ML) has shown promise across disciplines, out-of-sample generalizability is concerning. This is currently addressed by sharing multi-site data, but such centralization is challenging/infeasible to scale due to various limitations. Federated ML (FL) provides an alternative paradigm for accurate and generalizable ML, by only sharing numerical model updates. Here we present the largest FL study to-date, involving data from 71 sites across 6 continents, to generate an automatic tumor boundary detector for the rare disease of glioblastoma, reporting the largest such dataset in the literature (n = 6, 314). We demonstrate a 33% delineation improvement for the surgically targetable tumor, and 23% for the complete tumor extent, over a publicly trained model. We anticipate our study to: 1) enable more healthcare studies informed by large diverse data, ensuring meaningful results for rare diseases and underrepresented populations, 2) facilitate further analyses for glioblastoma by releasing our consensus model, and 3) demonstrate the FL effectiveness at such scale and task-complexity as a paradigm shift for multi-site collaborations, alleviating the need for data-sharing.

SUBMITTER: Pati S 

PROVIDER: S-EPMC9722782 | biostudies-literature | 2022 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Federated learning enables big data for rare cancer boundary detection.

Pati Sarthak S   Baid Ujjwal U   Edwards Brandon B   Sheller Micah M   Wang Shih-Han SH   Reina G Anthony GA   Foley Patrick P   Gruzdev Alexey A   Karkada Deepthi D   Davatzikos Christos C   Sako Chiharu C   Ghodasara Satyam S   Bilello Michel M   Mohan Suyash S   Vollmuth Philipp P   Brugnara Gianluca G   Preetha Chandrakanth J CJ   Sahm Felix F   Maier-Hein Klaus K   Zenk Maximilian M   Bendszus Martin M   Wick Wolfgang W   Calabrese Evan E   Rudie Jeffrey J   Villanueva-Meyer Javier J   Cha Soonmee S   Ingalhalikar Madhura M   Jadhav Manali M   Pandey Umang U   Saini Jitender J   Garrett John J   Larson Matthew M   Jeraj Robert R   Currie Stuart S   Frood Russell R   Fatania Kavi K   Huang Raymond Y RY   Chang Ken K   Balaña Carmen C   Capellades Jaume J   Puig Josep J   Trenkler Johannes J   Pichler Josef J   Necker Georg G   Haunschmidt Andreas A   Meckel Stephan S   Shukla Gaurav G   Liem Spencer S   Alexander Gregory S GS   Lombardo Joseph J   Palmer Joshua D JD   Flanders Adam E AE   Dicker Adam P AP   Sair Haris I HI   Jones Craig K CK   Venkataraman Archana A   Jiang Meirui M   So Tiffany Y TY   Chen Cheng C   Heng Pheng Ann PA   Dou Qi Q   Kozubek Michal M   Lux Filip F   Michálek Jan J   Matula Petr P   Keřkovský Miloš M   Kopřivová Tereza T   Dostál Marek M   Vybíhal Václav V   Vogelbaum Michael A MA   Mitchell J Ross JR   Farinhas Joaquim J   Maldjian Joseph A JA   Yogananda Chandan Ganesh Bangalore CGB   Pinho Marco C MC   Reddy Divya D   Holcomb James J   Wagner Benjamin C BC   Ellingson Benjamin M BM   Cloughesy Timothy F TF   Raymond Catalina C   Oughourlian Talia T   Hagiwara Akifumi A   Wang Chencai C   To Minh-Son MS   Bhardwaj Sargam S   Chong Chee C   Agzarian Marc M   Falcão Alexandre Xavier AX   Martins Samuel B SB   Teixeira Bernardo C A BCA   Sprenger Flávia F   Menotti David D   Lucio Diego R DR   LaMontagne Pamela P   Marcus Daniel D   Wiestler Benedikt B   Kofler Florian F   Ezhov Ivan I   Metz Marie M   Jain Rajan R   Lee Matthew M   Lui Yvonne W YW   McKinley Richard R   Slotboom Johannes J   Radojewski Piotr P   Meier Raphael R   Wiest Roland R   Murcia Derrick D   Fu Eric E   Haas Rourke R   Thompson John J   Ormond David Ryan DR   Badve Chaitra C   Sloan Andrew E AE   Vadmal Vachan V   Waite Kristin K   Colen Rivka R RR   Pei Linmin L   Ak Murat M   Srinivasan Ashok A   Bapuraj J Rajiv JR   Rao Arvind A   Wang Nicholas N   Yoshiaki Ota O   Moritani Toshio T   Turk Sevcan S   Lee Joonsang J   Prabhudesai Snehal S   Morón Fanny F   Mandel Jacob J   Kamnitsas Konstantinos K   Glocker Ben B   Dixon Luke V M LVM   Williams Matthew M   Zampakis Peter P   Panagiotopoulos Vasileios V   Tsiganos Panagiotis P   Alexiou Sotiris S   Haliassos Ilias I   Zacharaki Evangelia I EI   Moustakas Konstantinos K   Kalogeropoulou Christina C   Kardamakis Dimitrios M DM   Choi Yoon Seong YS   Lee Seung-Koo SK   Chang Jong Hee JH   Ahn Sung Soo SS   Luo Bing B   Poisson Laila L   Wen Ning N   Tiwari Pallavi P   Verma Ruchika R   Bareja Rohan R   Yadav Ipsa I   Chen Jonathan J   Kumar Neeraj N   Smits Marion M   van der Voort Sebastian R SR   Alafandi Ahmed A   Incekara Fatih F   Wijnenga Maarten M J MMJ   Kapsas Georgios G   Gahrmann Renske R   Schouten Joost W JW   Dubbink Hendrikus J HJ   Vincent Arnaud J P E AJPE   van den Bent Martin J MJ   French Pim J PJ   Klein Stefan S   Yuan Yading Y   Sharma Sonam S   Tseng Tzu-Chi TC   Adabi Saba S   Niclou Simone P SP   Keunen Olivier O   Hau Ann-Christin AC   Vallières Martin M   Fortin David D   Lepage Martin M   Landman Bennett B   Ramadass Karthik K   Xu Kaiwen K   Chotai Silky S   Chambless Lola B LB   Mistry Akshitkumar A   Thompson Reid C RC   Gusev Yuriy Y   Bhuvaneshwar Krithika K   Sayah Anousheh A   Bencheqroun Camelia C   Belouali Anas A   Madhavan Subha S   Booth Thomas C TC   Chelliah Alysha A   Modat Marc M   Shuaib Haris H   Dragos Carmen C   Abayazeed Aly A   Kolodziej Kenneth K   Hill Michael M   Abbassy Ahmed A   Gamal Shady S   Mekhaimar Mahmoud M   Qayati Mohamed M   Reyes Mauricio M   Park Ji Eun JE   Yun Jihye J   Kim Ho Sung HS   Mahajan Abhishek A   Muzi Mark M   Benson Sean S   Beets-Tan Regina G H RGH   Teuwen Jonas J   Herrera-Trujillo Alejandro A   Trujillo Maria M   Escobar William W   Abello Ana A   Bernal Jose J   Gómez Jhon J   Choi Joseph J   Baek Stephen S   Kim Yusung Y   Ismael Heba H   Allen Bryan B   Buatti John M JM   Kotrotsou Aikaterini A   Li Hongwei H   Weiss Tobias T   Weller Michael M   Bink Andrea A   Pouymayou Bertrand B   Shaykh Hassan F HF   Saltz Joel J   Prasanna Prateek P   Shrestha Sampurna S   Mani Kartik M KM   Payne David D   Kurc Tahsin T   Pelaez Enrique E   Franco-Maldonado Heydy H   Loayza Francis F   Quevedo Sebastian S   Guevara Pamela P   Torche Esteban E   Mendoza Cristobal C   Vera Franco F   Ríos Elvis E   López Eduardo E   Velastin Sergio A SA   Ogbole Godwin G   Soneye Mayowa M   Oyekunle Dotun D   Odafe-Oyibotha Olubunmi O   Osobu Babatunde B   Shu'aibu Mustapha M   Dorcas Adeleye A   Dako Farouk F   Simpson Amber L AL   Hamghalam Mohammad M   Peoples Jacob J JJ   Hu Ricky R   Tran Anh A   Cutler Danielle D   Moraes Fabio Y FY   Boss Michael A MA   Gimpel James J   Veettil Deepak Kattil DK   Schmidt Kendall K   Bialecki Brian B   Marella Sailaja S   Price Cynthia C   Cimino Lisa L   Apgar Charles C   Shah Prashant P   Menze Bjoern B   Barnholtz-Sloan Jill S JS   Martin Jason J   Bakas Spyridon S  

Nature communications 20221205 1


Although machine learning (ML) has shown promise across disciplines, out-of-sample generalizability is concerning. This is currently addressed by sharing multi-site data, but such centralization is challenging/infeasible to scale due to various limitations. Federated ML (FL) provides an alternative paradigm for accurate and generalizable ML, by only sharing numerical model updates. Here we present the largest FL study to-date, involving data from 71 sites across 6 continents, to generate an auto  ...[more]

Similar Datasets

| S-EPMC10550167 | biostudies-literature
2025-05-29 | PXD056810 | Pride
| S-EPMC10954782 | biostudies-literature
| S-EPMC8186799 | biostudies-literature
| S-EPMC10496350 | biostudies-literature
| S-EPMC11813139 | biostudies-literature
| S-EPMC11470020 | biostudies-literature
| S-EPMC8627228 | biostudies-literature
| S-EPMC7652692 | biostudies-literature
| S-EPMC9036494 | biostudies-literature