Project description:How we communicate research is changing because of new (especially digital) possibilities. This article sets out 10 easy steps researchers can take to disseminate their work in novel and engaging ways, and hence increase the impact of their research on science and society.
Project description:Life scientists are increasingly turning to high-throughput sequencing technologies in their research programs, owing to the enormous potential of these methods. In a parallel manner, the number of core facilities that provide bioinformatics support are also increasing. Notably, the generation of complex large datasets has necessitated the development of bioinformatics support core facilities that aid laboratory scientists with cost-effective and efficient data management, analysis, and interpretation. In this article, we address the challenges-related to communication, good laboratory practice, and data handling-that may be encountered in core support facilities when providing bioinformatics support, drawing on our own experiences working as support bioinformaticians on multidisciplinary research projects. Most importantly, the article proposes a list of guidelines that outline how these challenges can be preemptively avoided and effectively managed to increase the value of outputs to the end user, covering the entire research project lifecycle, including experimental design, data analysis, and management (i.e., sharing and storage). In addition, we highlight the importance of clear and transparent communication, comprehensive preparation, appropriate handling of samples and data using monitoring systems, and the employment of appropriate tools and standard operating procedures to provide effective bioinformatics support.
Project description:Software produced for research, published and otherwise, suffers from a number of common problems that make it difficult or impossible to run outside the original institution or even off the primary developer's computer. We present ten simple rules to make such software robust enough to be run by anyone, anywhere, and thereby delight your users and collaborators.
Project description:With an increasing amount of biological data available publicly, there is a need for a guide on how to successfully download and use this data. The 10 simple rules for using public biological data are: (1) use public data purposefully in your research; (2) evaluate data for your use case; (3) check data reuse requirements and embargoes; (4) be aware of ethics for data reuse; (5) plan for data storage and compute requirements; (6) know what you are downloading; (7) download programmatically and verify integrity; (8) properly cite data; (9) make reprocessed data and models Findable, Accessible, Interoperable, and Reusable (FAIR) and share; and (10) make pipelines and code FAIR and share. These rules are intended as a guide for researchers wanting to make use of available data and to increase data reuse and reproducibility.
Project description:Open, reproducible, and replicable research practices are a fundamental part of science. Training is often organized on a grassroots level, offered by early career researchers, for early career researchers. Buffet style courses that cover many topics can inspire participants to try new things; however, they can also be overwhelming. Participants who want to implement new practices may not know where to start once they return to their research team. We describe ten simple rules to guide participants of relevant training courses in implementing robust research practices in their own projects, once they return to their research group. This includes (1) prioritizing and planning which practices to implement, which involves obtaining support and convincing others involved in the research project of the added value of implementing new practices; (2) managing problems that arise during implementation; and (3) making reproducible research and open science practices an integral part of a future research career. We also outline strategies that course organizers can use to prepare participants for implementation and support them during this process.
Project description:We present ten simple rules that support converting a legacy vocabulary-a list of terms available in a print-based glossary or in a table not accessible using web standards-into a FAIR vocabulary. Various pathways may be followed to publish the FAIR vocabulary, but we emphasise particularly the goal of providing a globally unique resolvable identifier for each term or concept. A standard representation of the concept should be returned when the individual web identifier is resolved, using SKOS or OWL serialised in an RDF-based representation for machine-interchange and in a web-page for human consumption. Guidelines for vocabulary and term metadata are provided, as well as development and maintenance considerations. The rules are arranged as a stepwise recipe for creating a FAIR vocabulary based on the legacy vocabulary. By following these rules you can achieve the outcome of converting a legacy vocabulary into a standalone FAIR vocabulary, which can be used for unambiguous data annotation. In turn, this increases data interoperability and enables data integration.