Project description:Neutral lipid storage disease with myopathy (NLSDM) presents with skeletal muscle myopathy and severe dilated cardiomyopathy in nearly 40% of cases. NLSDM is caused by mutations in the PNPLA2 gene, which encodes the adipose triglyceride lipase (ATGL). Here we report clinical and genetic findings of a patient carrying two novel PNPLA2 mutations (c.696+4A>G and c.553_565delGTCCCCCTTCTCG). She presented at age 39 with right upper limb abduction weakness slowly progressing over the years with asymmetric involvement of proximal upper and lower limb muscles. Cardiological evaluation through ECG and heart echo scan was normal until the age 53, when mild left ventricular diastolic dysfunction was detected. Molecular analysis revealed that only one type of PNPLA2 transcript, with exon 5 skipping, was expressed in patient cells. Such aberrant mRNA causes the production of a shorter ATGL protein, lacking part of the catalytic domain. This is an intriguing case, displaying severe PNPLA2 mutations with clinical presentation characterized by slight cardiac impairment and full expression of severe asymmetric myopathy.
Project description:BackgroundLipid storage myopathy (LSM) is an autosomal recessive inherited lipid and amino metabolic disorder with great clinical heterogeneity. Variations in the electron transfer flavoprotein dehydrogenase (ETFDH) gene cause multiple acyl-CoA dehydrogenase deficiency (MADD), and have a manifestation of LSM. Muscle biopsy helps clarify the diagnosis of LSM, and next-generation sequencing (NGS) can be useful in identifying genomic mutation sites. The diagnosis of MADD contributes to targeted therapy.Case presentationWe report on a teenager who appeared to have muscle weakness and exercise intolerance at the onset. Before the referral to our hospital, he was unsuccessfully treated with glucocorticoid for suspected polymyositis. The next-generation sequencing of the proband and his parents revealed heterozygous variations, c.365G>A (p.G122D) inherited from the father, c.176-194_176-193del, and c.832-316C>T inherited from the mother in the ETFDH gene. The tandem mass spectrometry identified the mutations to be pathogenic. However, his parents and his younger sister who were detected with a mutation of c.365G>A presented no clinical symptoms. This indicates that the combination of the three compound heterozygous mutations in ETFDH is significant. After MADD was diagnosed, a dramatic clinical recovery and biochemical improvement presented as riboflavin was given to the patient across a week, which further confirmed the diagnosis of MADD.ConclusionOur observations extend the spectrum of ETFDH variants in Chinese the population and reinforce the role of NGS in diagnosis of MADD. Early diagnosis and appropriate treatment of LSM lead to great clinical efficacy and avoid some lethal complications.
Project description:Mutations in the PNPLA2 gene cause neutral lipid storage disease with myopathy (NLSDM) or triglyceride deposit cardiomyovasculopathy. We report a detailed case study of a 53-year-old man with NLSDM. The PNPLA2 gene was analyzed according to the reported method. We summarized the clinical, laboratory, and genetic information of 56 patients, including our patient and 55 other reported patients with homozygous or compound heterozygous mutations in the PNPLA2 gene. We found a novel homozygous mutation (c.194delC) in the PNPLA2 gene that resulted in frameshift. The patient suffered from normal-tension glaucoma and pulmonary cysts, symptoms that are relatively common in the elderly but were not previously reported for this disease. Our summary confirmed that Jordan's anomaly, polymorphonuclear leukocytes with lipid accumulation, was the most consistent finding of this disease. Because this disease is potentially treatable, our results may help rapid and correct diagnosis.
Project description:BackgroundNeutral lipid storage disease with myopathy (NLSDM) is a rare lipid metabolism disorder. In this study, we evaluated some circulating miRNAs levels in serum samples and the MRI of three affected siblings.MethodsThree members of one NLSDM family were identified: two brothers and one sister. Muscles of lower and right upper extremities were studied by MRI. Expression profile of miRNAs, obtained from serum samples, was detected using qRT-PCR.ResultsTwo brothers presented with progressive skeletal myopathy, while the sister had severe hepatosteatosis and diabetes. NLSDM patients showed a significant increase of muscle-specific miRNAs expression compared with healthy subjects. We found a correlation between hepatic damage and elevation of miRNAs expression profile of liver origin.ConclusionsThe dysregulation of miRNAs might represent an indicator of skeletal and hepatic damage and it might be useful to monitor the progression of NLSDM.
Project description:Mutations in PNPLA2 gene encoding for adipose triglyceride lipase (ATGL), involved in triglyceride degradation, lead to an inborn error of neutral lipid metabolism. The disorder that results in abnormal storage of neutral lipid is known as neutral lipid storage disease with myopathy (NLSDM). We report the follow-up of a 30-year-old woman with NLSDM, asymptomatic until age 23. At the age of 18, a high level of CPK and neutral lipid abnormal accumulation in muscle and skin cells suggested NLSDM diagnosis, afterwards confirmed by PNPLA2 analysis. After 5 years, she developed weakness in the upper and lower extremities. She was put on a low-fat diet with medium-chain triglycerides (MCT) oil supplementation but, although her CPK level decreased, myopathy continued to progress. At present, she presents severe skeletal myopathy without cardiac involvement. In this patient, no beneficial effects on progressive skeletal muscle weakness were detected after the MCT diet, probably due to complete loss of PNPLA2 expression.
Project description:BACKGROUND:Neutral lipid storage disease with myopathy (NLSDM) is a rare clinical heterogeneous disorder caused by mutations in the patatin-like phospholipase domain-containing 2 (PNPLA2) gene. NLSDM usually presents skeletal myopathy, cardiomyopathy and the multiple organs dysfunction. Around 50 cases of NLSDM have been described worldwide, whereas the comprehensive understanding of this disease are still limited. We therefore recruit NLSDM patients from 10 centers across China, summarize the clinical, muscle imaging, pathological and genetic features, and analyze the genotype-phenotype relationship. RESULTS:A total of 45 NLSDM patients (18 men and 27 women) were recruited from 40 unrelated families. Thirteen patients were born from consanguineous parents. The phenotypes were classified as asymptomatic hyperCKemia (2/45), pure skeletal myopathy (18/45), pure cardiomyopathy (4/45), and the combination of skeletal myopathy and cardiomyopathy (21/45). Right upper limb weakness was the early and prominent feature in 61.5% of patients. On muscle MRI, the long head of the biceps femoris, semimembranosus and adductor magnus on thighs, the soleus and medial head of the gastrocnemius on lower legs showed the most severe fatty infiltration. Thirty-three families were carrying homozygous mutations, while seven families were carrying compound heterozygous mutations. A total of 23 mutations were identified including 11 (47.8%) point mutations, eight (34.8%) deletions and four (17.4%) insertions. c.757 + 1G > T, c.245G > A and c.187 + 1G > A were the three most frequent mutations. Among four groups of phenotypes, significant differences were shown in disease onset (< 20 years versus ≥20 years old, p = 0.003) and muscle pathology (with rimmed vacuoles versus without rimmed vacuoles, p = 0.001). PNPLA2 mutational type or functional defects did not show great impact on phenotypes. CONCLUSION:We outline the clinical and genetic spectrum in a large cohort of NLSDM patients. Selective muscle fatty infiltration on posterior compartment of legs are characteristic of NLSDM. Chinese patients present with distinctive and relative hotspot PNPLA2 mutations. The disease onset age and pathological appearance of rimmed vacuoles are proved to be related with the clinical manifestations. The phenotypes are not strongly influenced by genetic defects, suggesting the multiple environmental risk factors in the development of NLSDM.
Project description:We present six novel patients affected by lipid storage myopathy (LSM) presenting mutations in the ETFDH gene. Although the diagnosis of multiple acyl-coenzyme-A dehydrogenase deficiency (MADD) in adult life is difficult, it is rewarding because of the possibility of treating patients with carnitine or riboflavin, leading to a full recovery. In our patients, a combination of precipitating risk factors including previous anorexia, alcoholism, poor nutrition, and pregnancy contributed to a metabolic critical condition that precipitated the catabolic state.In the present series of cases, five novel mutations have been identified in the ETFDH gene. We propose clinical guidelines to screen patients with LSM due to different defects, in order to obtain a fast diagnosis and offer appropriate treatment. In such patients, early diagnosis and treatment as well as avoiding risk factors are part of clinical management.Specific biochemical studies are indicated to identify the type of LSM, such as level of free carnitine and acyl-carnitines and studies or organic acidemia. Indeed, when a patient is biochemically diagnosed with secondary carnitine deficiency, a follow-up with appropriate clinical-molecular protocol and genetic analysis is important to establish the final diagnosis, since riboflavin can be supplemented with benefit if riboflavin-responsive MADD is present. In muscle biopsies, increased lipophagy associated with p62-positive aggregates was observed. The clinical improvement can be attributed to the removal of an autophagic block, which appears to be reversible in this LSM.
Project description:BackgroundLipid storage myopathy (LSM) is a genetically heterogeneous group with variable clinical phenotypes. Late-onset multiple acyl-coenzyme A dehydrogenation deficiency (MADD) is a rather common form of LSM in China. Diagnosis and clinical management of it remain challenging, especially without robust muscle biopsy result and genetic detection. As the noninvasion and convenience, muscle magnetic resonance imaging (MRI) is a helpful assistant, diagnostic tool for neuromuscular disorders. However, the disease-specific MRI patterns of muscle involved and its diagnostic value in late-onset MADD have not been systematic analyzed.MethodsWe assessed the MRI pattern and fat infiltration degree of the lower limb muscles in 28 late-onset MADD patients, combined with detailed clinical features and gene spectrum. Fat infiltration degree of the thigh muscle was scored while that of gluteus was described as obvious or not. Associated muscular atrophy was defined as obvious muscle bulk reduction.ResultsThe mean scores were significantly different among the anterior, medial, and posterior thigh muscle groups. The mean of fat infiltration scores on posterior thigh muscle group was significantly higher than either anterior or medial thigh muscle group (P < 0.001). Moreover, the mean score on medial thigh muscle group was significantly higher than that of anterior thigh muscle group (P < 0.01). About half of the patients displayed fat infiltration and atrophy in gluteus muscles. Of 28 patients, 12 exhibited atrophy in medial and/or posterior thigh muscle groups, especially in posterior thigh muscle group. Muscle edema pattern was not found in all the patients.ConclusionsLate-onset MADD patients show a typical muscular imaging pattern of fat infiltration and atrophy on anterior, posterior, and medial thigh muscle groups, with major involvement of posterior thigh muscle group and gluteus muscles and a sparing involvement of anterior thigh compartment. Our findings also suggest that muscle MRI of lower limbs is a helpful tool in guiding clinical evaluation on late-onset MADD.
Project description:Dystonin (DST), which encodes cytoskeletal linker proteins, expresses three tissue-selective isoforms: neural DST-a, muscular DST-b, and epithelial DST-e. DST mutations cause different disorders, including hereditary sensory and autonomic neuropathy 6 (HSAN-VI) and epidermolysis bullosa simplex; however, etiology of the muscle phenotype in DST-related diseases has been unclear. Because DST-b contains all of the DST-a-encoding exons, known HSAN-VI mutations could affect both DST-a and DST-b isoforms. To investigate the specific function of DST-b in striated muscles, we generated a Dst-b-specific mutant mouse model harboring a nonsense mutation. Dst-b mutant mice exhibited late-onset protein aggregate myopathy and cardiomyopathy without neuropathy. We observed desmin aggregation, focal myofibrillar dissolution, and mitochondrial accumulation in striated muscles, which are common characteristics of myofibrillar myopathy. We also found nuclear inclusions containing p62, ubiquitin, and SUMO proteins with nuclear envelope invaginations as a unique pathological hallmark in Dst-b mutation-induced cardiomyopathy. RNA-sequencing analysis revealed changes in expression of genes responsible for cardiovascular functions. In silico analysis identified DST-b alleles with nonsense mutations in populations worldwide, suggesting that some unidentified hereditary myopathy and cardiomyopathy are caused by DST-b mutations. Here, we demonstrate that the Dst-b isoform is essential for long-term maintenance of striated muscles.
Project description:BackgroundMutations in the TK2 gene are strongly associated with mitochondrial DNA depletion syndrome (MDS), a severe condition with high mortality and poor outcomes. Although many MDS cases are reported, those linked to TK2 mutations with lipid deposition are rare. Large deletions in the TK2 gene are even rarer.MethodsWe conducted whole-exome sequencing to find the gene linked to MDS, followed by genomic and structural analyses, histopathological, and functional analyses to assess the mutations' pathogenicity. Additionally, a HEK293T cell model with TK2 mutations was created to investigate the impact of large deletions on mitochondrial function.ResultsThe patient was found to have a novel compound heterozygous mutation in the TK2 gene, consisting of a large deletion spanning exons 5-10 (E5-E10 del) and a previously reported missense mutation (c.311C > A, p.Arg104His). Analysis of the patient's muscle tissue demonstrated a marked reduction in mtDNA content and a significant impairment in overall mitochondrial function. In the HEK293T cell model, the group with the deletion mutation exhibited a notable reduction in TK2 protein expression and levels of mitochondrial complex subunits when compared to the control group. Furthermore, there was an observed increase in ROS levels, a decrease in ATP production, and compromised mitochondrial respiratory chain function. Moreover, we conducted a comprehensive review of the previously reported genotypic and phenotypic spectrum of TK2 mutations in the literature.ConclusionsThis case report underscores the detrimental impact of large fragment deletion mutations in the TK2 gene and elucidates their role in the pathogenesis of MDS. It broadens the spectrum of known TK2 mutations and enhances our understanding of the structural and functional consequences of these mutations.