Unknown

Dataset Information

0

Muscle-Specific Ablation of Glucose Transporter 1 (GLUT1) Does Not Impair Basal or Overload-Stimulated Skeletal Muscle Glucose Uptake.


ABSTRACT: Glucose transporter 1 (GLUT1) is believed to solely mediate basal (insulin-independent) glucose uptake in skeletal muscle; yet recent work has demonstrated that mechanical overload, a model of resistance exercise training, increases muscle GLUT1 levels. The primary objective of this study was to determine if GLUT1 is necessary for basal or overload-stimulated muscle glucose uptake. Muscle-specific GLUT1 knockout (mGLUT1KO) mice were generated and examined for changes in body weight, body composition, metabolism, systemic glucose regulation, muscle glucose transporters, and muscle [3H]-2-deoxyglucose uptake ± the GLUT1 inhibitor BAY-876. [3H]-hexose uptake ± BAY-876 was also examined in HEK293 cells-expressing GLUT1-6 or GLUT10. mGLUT1KO mice exhibited no impairments in body weight, lean mass, whole body metabolism, glucose tolerance, basal or overload-stimulated muscle glucose uptake. There was no compensation by the insulin-responsive GLUT4. In mGLUT1KO mouse muscles, overload stimulated higher expression of mechanosensitive GLUT6, but not GLUT3 or GLUT10. In control and mGLUT1KO mouse muscles, 0.05 µM BAY-876 impaired overload-stimulated, but not basal glucose uptake. In the GLUT-HEK293 cells, BAY-876 inhibited glucose uptake via GLUT1, GLUT3, GLUT4, GLUT6, and GLUT10. Collectively, these findings demonstrate that GLUT1 does not mediate basal muscle glucose uptake and suggest that a novel glucose transport mechanism mediates overload-stimulated glucose uptake.

SUBMITTER: McMillin SL 

PROVIDER: S-EPMC9776291 | biostudies-literature | 2022 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Muscle-Specific Ablation of Glucose Transporter 1 (GLUT1) Does Not Impair Basal or Overload-Stimulated Skeletal Muscle Glucose Uptake.

McMillin Shawna L SL   Evans Parker L PL   Taylor William M WM   Weyrauch Luke A LA   Sermersheim Tyler J TJ   Welc Steven S SS   Heitmeier Monique R MR   Hresko Richard C RC   Hruz Paul W PW   Koumanov Francoise F   Holman Geoffrey D GD   Abel E Dale ED   Witczak Carol A CA  

Biomolecules 20221123 12


Glucose transporter 1 (GLUT1) is believed to solely mediate basal (insulin-independent) glucose uptake in skeletal muscle; yet recent work has demonstrated that mechanical overload, a model of resistance exercise training, increases muscle GLUT1 levels. The primary objective of this study was to determine if GLUT1 is necessary for basal or overload-stimulated muscle glucose uptake. Muscle-specific GLUT1 knockout (mGLUT1KO) mice were generated and examined for changes in body weight, body composi  ...[more]

Similar Datasets

| S-EPMC7794310 | biostudies-literature
| S-EPMC16542 | biostudies-literature
| S-EPMC4358273 | biostudies-literature
2015-01-16 | GSE64757 | GEO
2015-01-16 | E-GEOD-64757 | biostudies-arrayexpress
| S-EPMC6962504 | biostudies-literature
| S-EPMC4412407 | biostudies-literature
| S-EPMC4228097 | biostudies-literature
| S-EPMC3609592 | biostudies-literature
| S-EPMC3349257 | biostudies-literature