Unknown

Dataset Information

0

Hyperthermia as a Potential Cornerstone of Effective Multimodality Treatment with Radiotherapy, Cisplatin and PARP Inhibitor in IDH1-Mutated Cancer Cells.


ABSTRACT: Mutations in the isocitrate dehydrogenase 1 (IDH1MUT) gene occur in various types of malignancies, including ~60% of chondrosarcomas, ~30% of intrahepatic cholangiocarcinomas and >80% of low-grade gliomas. IDH1MUT are causal in the development and progression of these types of cancer due to neomorphic production of the oncometabolite D-2-hydroxyglutarate (D-2HG). Intracellular accumulation of D-2HG has been implicated in suppressing homologous recombination and renders IDH1MUT cancer cells sensitive to DNA-repair-inhibiting agents, such as poly-(adenosine 5′-diphosphate−ribose) polymerase inhibitors (PARPi). Hyperthermia increases the efficacy of DNA-damaging therapies such as radiotherapy and platinum-based chemotherapy, mainly by inhibition of DNA repair. In the current study, we investigated the additional effects of hyperthermia (42 °C for 1 h) in the treatment of IDH1MUT HCT116 colon cancer cells and hyperthermia1080 chondrosarcoma cancer cells in combination with radiation, cisplatin and/or a PARPi on clonogenic cell survival, cell cycle distribution and the induction and repair of DNA double-strand breaks. We found that hyperthermia in combination with radiation or cisplatin induces an increase in double-strand breaks and cell death, up to 10-fold in IDH1MUT cancer cells compared to IDH1 wild-type cells. This vulnerability was abolished by the IDH1MUT inhibitor AGI-5198 and was further increased by the PARPi. In conclusion, our study shows that IDH1MUT cancer cells are sensitized to hyperthermia in combination with irradiation or cisplatin and a PARPi. Therefore, hyperthermia may be an efficacious sensitizer to cytotoxic therapies in tumors where the clinical application of hyperthermia is feasible, such as IDH1MUT chondrosarcoma of the extremities.

SUBMITTER: Khurshed M 

PROVIDER: S-EPMC9777513 | biostudies-literature | 2022 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Hyperthermia as a Potential Cornerstone of Effective Multimodality Treatment with Radiotherapy, Cisplatin and PARP Inhibitor in <i>IDH1</i>-Mutated Cancer Cells.

Khurshed Mohammed M   Prades-Sagarra Elia E   Saleh Sarah S   Sminia Peter P   Wilmink Johanna W JW   Molenaar Remco J RJ   Crezee Hans H   van Noorden Cornelis J F CJF  

Cancers 20221217 24


Mutations in the isocitrate dehydrogenase 1 (IDH1MUT) gene occur in various types of malignancies, including ~60% of chondrosarcomas, ~30% of intrahepatic cholangiocarcinomas and >80% of low-grade gliomas. IDH1MUT are causal in the development and progression of these types of cancer due to neomorphic production of the oncometabolite D-2-hydroxyglutarate (D-2HG). Intracellular accumulation of D-2HG has been implicated in suppressing homologous recombination and renders IDH1MUT cancer cells sensi  ...[more]

Similar Datasets

| S-EPMC10288417 | biostudies-literature
| S-EPMC5629366 | biostudies-literature
| S-EPMC6624074 | biostudies-literature
| S-EPMC7518105 | biostudies-literature
| S-EPMC6792082 | biostudies-literature
| S-EPMC8002916 | biostudies-literature
| S-EPMC6611509 | biostudies-literature
| S-EPMC9102625 | biostudies-literature
| S-EPMC4914348 | biostudies-literature
| S-EPMC3548957 | biostudies-literature