Unknown

Dataset Information

0

Evaluation of Respiratory Sounds Using Image-Based Approaches for Health Measurement Applications


ABSTRACT: Goal: The evaluation of respiratory events using audio sensing in an at-home setting can be indicative of worsening health conditions. This paper investigates the use of image-based transfer learning applied to five audio visualizations to evaluate three classification tasks (C1: wet vs. dry vs. whooping cough vs. restricted breathing; C2: wet vs. dry cough; C3: cough vs. restricted breathing). Methods: The five visualizations (linear spectrogram, logarithmic spectrogram, Mel-spectrogram, wavelet scalograms, and aggregate images) are applied to a pre-trained AlexNet image classifier for all tasks. Results: The aggregate image-based classifier achieved the highest overall performance across all tasks with C1, C2, and C3 having testing accuracies of 0.88, 0.88, and 0.91 respectively. However, the Mel-spectrogram method had the highest testing accuracy (0.94) for C2. Conclusions: The classification of respiratory events using aggregate image inputs to transfer learning approaches may help healthcare professionals by providing information that would otherwise be unavailable to them.

SUBMITTER:  

PROVIDER: S-EPMC9788675 | biostudies-literature | 2022 Jan

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC8443549 | biostudies-literature
2014-12-20 | E-GEOD-64144 | biostudies-arrayexpress
| S-EPMC5677266 | biostudies-literature
| S-EPMC9056464 | biostudies-literature
2014-12-20 | GSE64144 | GEO
| S-EPMC8067376 | biostudies-literature
| S-EPMC8108524 | biostudies-literature
| S-EPMC6276531 | biostudies-literature
| S-EPMC6222266 | biostudies-literature
| S-EPMC3874055 | biostudies-other