Unknown

Dataset Information

0

Comprehensive analysis of the metabolic and genomic features of tannin transforming Lactiplantibacillus plantarum strains.


ABSTRACT: Extracellular tannase Lactiplantibacillus plantarum-producing strains (TanA+) release bioactive metabolites from dietary tannins. However, there is a paucity of knowledge of TanA+ strains and their hydrolyzing capacities. This study aimed to shed light on the metabolic and genomic features of TanA+ L. plantarum strains and to develop a screening technique. The established spectrophotometric was validated by UPLC-UV-QToF. Eight of 115 screened strains harbored the tanA gene, and six presented TanA activity (PROBI S126, PROBI S204, RKG 1-473, RKG 1-500, RKG 2-219, and RKG 2-690). When cultured with tannic acid (a gallotannin), TanA+ strains released 3.2-11 times more gallic acid than a lacking strain (WCFS1) (p < 0.05). TanA+ strains with gallate decarboxylase (n = 5) transformed this latter metabolite, producing 2.2-4.8 times more pyrogallol than the TanA lacking strain (p < 0.05). However, TanA+ strains could not transform punicalagin (an ellagitannin). Genomic analysis revealed high similarity between TanA+ strains, as only two variable regions of phage and polysaccharide synthesis were distinguished. A phylogenetic analysis of 149 additional genome sequences showed that tanA harboring strains form a cluster and present two bacteriocin coding sequences profile. In conclusion, TanA+ L. plantarum strains are closely related and possess the ability to resist and transform gallotannins. TanA can be screened by the method proposed herein.

SUBMITTER: Pulido-Mateos EC 

PROVIDER: S-EPMC9794748 | biostudies-literature | 2022 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Comprehensive analysis of the metabolic and genomic features of tannin transforming Lactiplantibacillus plantarum strains.

Pulido-Mateos Elena C EC   Lessard-Lord Jacob J   Guyonnet Denis D   Desjardins Yves Y   Roy Denis D  

Scientific reports 20221227 1


Extracellular tannase Lactiplantibacillus plantarum-producing strains (TanA+) release bioactive metabolites from dietary tannins. However, there is a paucity of knowledge of TanA+ strains and their hydrolyzing capacities. This study aimed to shed light on the metabolic and genomic features of TanA+ L. plantarum strains and to develop a screening technique. The established spectrophotometric was validated by UPLC-UV-QToF. Eight of 115 screened strains harbored the tanA gene, and six presented Tan  ...[more]

Similar Datasets

| S-EPMC9290807 | biostudies-literature
| S-EPMC7914981 | biostudies-literature
| S-EPMC9125032 | biostudies-literature
| S-EPMC8316525 | biostudies-literature
| S-EPMC4018929 | biostudies-literature
| S-EPMC11011416 | biostudies-literature
| S-EPMC10745348 | biostudies-literature
| S-EPMC11593849 | biostudies-literature
| S-EPMC11602494 | biostudies-literature
| S-EPMC9270224 | biostudies-literature