Project description:The dynamic viscosity (η) of the molten system (NaF-KF)eut-NdF3 containing NdF3 in an amount from 0 to 15 mol.% was studied by rotational viscometry using a high-temperature rheometer, FRS 1600. Viscosity measurements were carried out in the temperature range from liquidus to 1153 K. The measurement procedure was tested on the (LiF-NaF-KF)eut melt. The choice of the parameter shear rate was carried out according to the viscosity and flow curves. Viscosity does not depend on shear rate, and therefore the investigated melts behave like Newtonian fluids, in the range of 9-19 s-1. The experimentally obtained viscosity values for (NaF-KF)eut-NdF3 melts in a wide temperature range are described by an exponential equation. In the coordinates ln(η) = f(1/T), they are straight lines; however, their temperature coefficients are noticeably different, which indicates significant impacts of composition and temperature.
Project description:In this study, by applying 19F, 23Na and 7Li high-resolution NMR methods, the evolution of the [Zr x F y ]4x-y local ionic structures in FLiNaK-ZrF4 salt mixtures were elucidated. K3ZrF7, Na3ZrF7 and Na7Zr6F31 crystal phases were identified when the melt salts were being solidified. The distribution of these [Zr x F y ]4x-y species was dependent on the content of ZrF4 in FLiNaK eutectic salts. Moreover, K3ZrF7 phase transition from an orthorhombic lattice into a disordered cubic lattice was clarified, thereby causing dynamics of the coordinated F- ions to be reduced and the well-ordered crystal lattices to be destroyed. These mentioned results provide a further insight into the Zr-F based ionic structure and the formation of the disordered Zr-F structure in ZrF4-based eutectic salts.
Project description:Herein, we present a method for the preparation of titanium dioxide with a relatively large surface area, mesoporosity, and good thermal stability. We show that by utilizing molten salt hydrates (MSH) as non-trivial synthesis media, we prepare materials with thin, flake-like morphology with a large aspect ratio. The thickness of the synthesized flakes can be controlled by adjusting the salt/water (always in the MSH regime) and/or the salt/precursor molar ratio. The TiO2 flakes appear to be formed via the aggregation of small TiO2 nanoparticles (typically around 7-8 nm) in an apparent 2D morphology. We hypothesize that the ordered structure of water molecules within the ions of the salt in conjunction with the fast hydrolysis/condensation rates occurring in the presence of water of the precursor used are responsible for this agglomeration. We also report that the purity of materials (anatase vs brookite crystalline phase) appears to be a function of the LiBr/water ratio which is hypothesized to arise either from pH variation or due to lattice matching of the relevant orthorhombic structures (brookite and LiBr x ·3H2O). Discussion on the potential for scalability of the presented method is also highlighted in this article.
Project description:A facile molten salt technique is an interesting preparation method as it enables mass production of materials. With the use of CsNO3 salt, Cs-intercalated MnO2 hollow microflowers are obtained in this work. δ-MnO2 with a layered structure, instead of other allotropes with smaller structural cavities, is formed and stabilized by large Cs+ ions. Formation of the hollow microflowers is explained based on the Ostwald ripening process. The salt to starting agent ratio has little effect on the crystal structure and morphologies of the products but does influence the crystallinity, the interlayer distance, and the intercalating Cs+ content. The capacity of Cs+ in the structure and the interlayer distance are maximized when the weight ratio of CsNO3 : MnSO4 is 7 : 1. Cs-MnO2 obtained from this optimum ratio has most suitable crystallinity and interlayer distance, and consequently shows a highest specific capacitance of 155 F g-1 with excellent cycling performance. The obtained specific capacitance is comparable to that of other alkaline-intercalated MnO2, suggesting that Cs-MnO2 could be another interesting candidate for supercapacitor electrodes.
Project description:MAX phases are gaining attention as precursors of two-dimensional MXenes that are intensively pursued in applications for electrochemical energy storage. Here, we report the preparation of V2SnC MAX phase by the molten salt method. V2SnC is investigated as a lithium storage anode, showing a high gravimetric capacity of 490 mAh g-1 and volumetric capacity of 570 mAh cm-3 as well as superior rate performance of 95 mAh g-1 (110 mAh cm-3) at 50 C, surpassing the ever-reported performance of MAX phase anodes. Supported by operando X-ray diffraction and density functional theory, a charge storage mechanism with dual redox reaction is proposed with a Sn-Li (de)alloying reaction that occurs at the edge sites of V2SnC particles where Sn atoms are exposed to the electrolyte followed by a redox reaction that occurs at V2C layers with Li. This study offers promise of using MAX phases with M-site and A-site elements that are redox active as high-rate lithium storage materials.
Project description:Molten carbonate fuel cells have been commercialized as a mature technology. Due to the liquid electrolyte in molten carbonate fuel cells, gas seal and low contact resistance are easier to achieve than in other fuel cells. Herein, we report an investigation of the viability of a molten oxoacid salt as a novel type of fuel cell electrolyte. In comparison with molten carbonate electrolytes for MCFCs that operate at 500-700 °C, for which a ceramic support matrix is required, the molten proton conductor electrolyte has a lower working temperature range of 150-250 °C. The present study has shown that an electrolyte membrane, in which molten CsH5(PO4)2 is held in a matrix made of PBI polymer and SiO2 powder, has excellent thermal stability, good mechanical properties, and high proton conductivity. In addition, a molten proton conductor fuel cell equipped with such an electrolyte membrane operating at 200 °C showed an open-circuit voltage of 1.08 V, and a stable output voltage during continuous measurement for 150 h at a constant output current density of 100 mA cm-2.
Project description:Converting CO2 into value-added chemical fuels and functional materials by CO2 reduction reaction (CO2RR) is conducive to achieving a carbon-neutral energy cycle. However, it is still challenging to efficiently navigate CO2RR toward desirable products. Herein, we report a facile strategy to extend product species in borate-containing molten electrolyte at a positively shifted cathodic potential with a high current density (e.g. 100 mA/cm2), which can selectively electro-transform CO2 into desired products (either CO or solid carbon nanofibers, respectively reaching a high selectivity of ∼90%). The borates can act as a controller of electrolyte alkalinity to buffer the concentration of sequentially generated O2- during CO2RR, positively shifting the reduction potential of the captured CO2 and concurrently extending the product species. The sustainable buffering effect is available under CO2 atmosphere. Compared with borate-free electrolyte, the CO2 conversion efficiency is over three times higher, while the electrolysis energy consumption is decreased by over 40%.
Project description:Molten lithium tetrafluoroberyllate (Li2BeF4) salt, also known as FLiBe, with a 2:1 mixture of LiF and BeF2 is being proposed as a coolant and solvent in advanced nuclear reactor designs, such as the molten salt reactor or the fluoride salt cooled high-temperature reactor. We present the results on the structure and properties of FLiBe over a wide range of temperatures, 0-2000 K, from high-throughput ab initio molecular dynamics simulation using a supercell model of 504 atoms. The variations in the local structures of solid and liquid FLiBe with temperature are discussed in terms of a pair distribution function, coordination number, and bond angle distribution. The temperature-dependent electronic structure and optical and mechanical properties of FLiBe are calculated. The optical and mechanical property results are reported for the first time. The results above and below the melting temperature (∼732 K) are compared with the experimental data and with data for crystalline FLiBe. The electronic structure and interatomic bonding results are discussed in correlation with the mechanical strength. A novel concept of total bond order density (TBOD), an important quantum mechanical parameter, is used to characterize the internal cohesion and strength in the simulated models. The results show a variation in the rate of change in properties in solid and liquid phases with anomalous behavior across the melting region. The observed trend is the decrease in mechanical strength, band gap, and TBOD in a nonlinear fashion as a function of temperature. The refractive index shows a surprising minimum at 850 K, among the tested temperatures, which lies above the melting point. These findings provide a new platform to understand the interplay between the temperature-dependent structures and properties of FLiBe salt.
Project description:This work proposes a new solvent system composed of a molten salt in pressurized water, so-called hydrothermal molten salt (HyMoS). This system changes the paradigm of the solubility of inorganics in supercritical water. Using as an example NaOH, a low melting temperature salt, we show the possibility to precipitate it at a temperature above its melting one, leading to the instantaneous formation of the HyMoS. The molten salt is then capable of dissolving a large amount of inorganic salt, as exemplified with Na2SO4. This solvent system opens innovative ways with a potential to impact applications in many fields including materials synthesis, biomass conversion, recycling, green chemistry, catalysis, sustainable manufacturing and others. Beyond the impact on the hydrothermal community, this work also offers previously unexplored opportunities for the molten salt field with access to flow chemistry and insights regarding salt precipitation mechanism.