Project description:Systemic lupus erythematosus (SLE) is a multifactorial autoimmune disorder. The study of diverse mouse models of lupus has provided clues to the etiology of SLE. Spontaneous mouse models of lupus have led to identification of numerous susceptibility loci from which several candidate genes have emerged. Meanwhile, induced models of lupus have provided insight into the role of environmental factors in lupus pathogenesis as well as provided a better understanding of cellular mechanisms involved in the onset and progression of disease. The SLE-like phenotypes present in these models have also served to screen numerous potential SLE therapies. Due to the complex nature of SLE, it is necessary to understand the effect specific targeted therapies have on immune homeostasis. Furthermore, knowledge gained from mouse models will provide novel therapy targets for the treatment of SLE.
Project description:Systemic lupus erythematosus (SLE) is an autoimmune rheumatic disease with a prevalence of approximately 1 in 1000. Over the last 30 years, advances in treatment such as use of corticosteroids and immunosuppressants have improved life expectancy and quality of life for patients with lupus and the key unmet needs have therefore changed. With the reduced mortality from disease activity, development of cardiovascular disease (CVD) has become an increasingly important cause of death in patients with SLE. The increased CVD risk in these patients is partly, but not fully explained by standard risk factors, and abnormalities in the immune response to lipids may play a role. Invariant natural killer T cells, which are triggered specifically by lipid antigens, may protect against progression of subclinical atherosclerosis. However, currently our recommendation is that clinicians should focus on optimal management of standard CVD risk factors such as smoking, blood pressure and lipid levels. Fatigue is one of the most common and most limiting symptoms suffered by patients with SLE. The cause of fatigue is multifactorial and disease activity does not explain this symptom. Consequently, therapies directed towards reducing inflammation and disease activity do not reliably reduce fatigue and new approaches are needed. Currently, we recommend asking about sleep pattern, optimising pain relief and excluding other causes of fatigue such as anaemia and metabolic disturbances. For the subgroup of patients whose disease activity is not fully controlled by standard treatment regimes, a range of different biologic agents have been proposed and subjected to clinical trials. Many of these trials have given disappointing results, though belimumab, which targets B lymphocytes, did meet its primary endpoint. New biologics targeting B cells, T cells or cytokines (especially interferon) are still going through trials raising the hope that novel therapies for patients with refractory SLE may be available soon.
Project description:MicroRNAs (miRNAs) are endogenous small RNA molecules best known for their function in post-transcriptional gene regulation. Immunologically, miRNA regulates the differentiation and function of immune cells and its malfunction contributes to the development of various autoimmune diseases including systemic lupus erythematosus (SLE). Over the last decade, accumulating researches provide evidence for the connection between dysregulated miRNA network and autoimmunity. Interruption of miRNA biogenesis machinery contributes to the abnormal T and B cell development and particularly a reduced suppressive function of regulatory T cells, leading to systemic autoimmune diseases. Additionally, multiple factors under autoimmune conditions interfere with miRNA generation via key miRNA processing enzymes, thus further skewing the miRNA expression profile. Indeed, several independent miRNA profiling studies reported significant differences between SLE patients and healthy controls. Despite the lack of a consistent expression pattern on individual dysregulated miRNAs in SLE among these studies, the aberrant expression of distinct groups of miRNAs causes overlapping functional outcomes including perturbed type I interferon signalling cascade, DNA hypomethylation and hyperactivation of T and B cells. The impact of specific miRNA-mediated regulation on function of major immune cells in lupus is also discussed. Although research on the clinical application of miRNAs is still immature, through an integrated approach with advances in next generation sequencing, novel tools in bioinformatics database analysis and new in vitro and in vivo models for functional evaluation, the diagnostic and therapeutic potentials of miRNAs may bring to fruition in the future.
Project description:The pathogenesis of childhood-onset systemic lupus erythematosus (cSLE) is complex and not fully understood. It involves three key factors: genetic risk factors, epigenetic mechanisms, and environmental triggers. Genetic factors play a significant role in the development of the disease, particularly in younger individuals. While cSLE has traditionally been considered a polygenic disease, it is now recognized that in rare cases, a single gene mutation can lead to the disease. Although these cases are uncommon, they provide valuable insights into the disease mechanism, enhance our understanding of pathogenesis and immune tolerance, and facilitate the development of targeted treatment strategies. This review aims to provide a comprehensive overview of both monogenic and polygenic SLE, emphasizing the implications of specific genes in disease pathogenesis. By conducting a thorough analysis of the genetic factors involved in SLE, we can improve our understanding of the underlying mechanisms of the disease. Furthermore, this knowledge may contribute to the identification of effective biomarkers and the selection of appropriate therapies for individuals with SLE.
Project description:Systemic lupus erythematosus (SLE) is a chronic systemic autoimmune disease with variable clinical presentation frequently affecting the skin, joints, haemopoietic system, kidneys, lungs and central nervous system. It can be life threatening when major organs are involved. The full pathological and genetic mechanisms of this complex disease are yet to be elucidated; although roles have been described for environmental triggers such as sunlight, drugs and chemicals, and infectious agents. Cellular processes such as inefficient clearing of apoptotic DNA fragments and generation of autoantibodies have been implicated in disease progression. A diverse array of disease-associated genes and microRNA regulatory molecules that are dysregulated through polymorphism and copy number variation have also been identified; and an effect of ethnicity on susceptibility has been described.
Project description:Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by loss of tolerance to self nucleic acids. The source of autoantigen that drives disease onset and progression is unclear. A candidate source of autoantigen is the neutrophil extracellular trap (NET), which releases nucleic acids into the extracellular environment, generating a structure composed of DNA coated with antimicrobial proteins. On the basis of in vitro and patient correlative studies, several groups have suggested that NETs may provide lupus autoantigens. The observation that NET release (NETosis) relies on activity of the phagocyte NADPH (reduced form of nicotinamide adenine dinucleotide phosphate) oxidase (Nox2) in neutrophils of both humans and mice provided a genetic strategy to test this hypothesis in vivo. Therefore, we crossed an X-linked nox2 null allele onto the lupus-prone MRL.Fas(lpr) genetic background and assessed immune activation, autoantibody generation, and SLE pathology. Counter to the prevailing hypothesis, Nox2-deficient lupus-prone mice had markedly exacerbated lupus, including increased spleen weight, increased renal disease, and elevated and altered autoantibody profiles. Moreover, heterozygous female mice, which have Nox2 deficiency in 50% of neutrophils, also had exacerbated lupus and altered autoantibody patterns, suggesting that failure to undergo normal Nox2-dependent cell death may result in release of immunogenic self-constituents that stimulate lupus. Our results indicate that NETosis does not contribute to SLE in vivo; instead, Nox2 acts to inhibit disease pathogenesis, making this enzyme an important target for further study and a candidate for therapeutic intervention.
Project description:Systemic lupus erythematosus (SLE) is a highly heterogeneous autoimmune disease that primarily affects women. Currently, in the search for the mechanisms of SLE pathogenesis, the association of lifestyle factors such as diet, cigarette smoking, ultraviolet radiation exposure, alcohol and caffeine-rich beverage consumption with SLE susceptibility has been systematically investigated. The cellular and molecular mechanisms mediating lifestyle effects on SLE occurrence, including interactions between genetic risk loci and environment, epigenetic changes, immune dysfunction, hyper-inflammatory response, and cytotoxicity, have been proposed. In the present review of the reports published in reputable peer-reviewed journals and government websites, we consider the current knowledge about the relationships between lifestyle factors and SLE incidence and outline directions of future research in this area. Formulation of practical measures with regard to the lifestyle in the future will benefit SLE patients and may provide potential therapy strategies.
Project description:Systemic lupus erythematosus (SLE) is an immune-complex-mediated multi-systemic autoimmune condition of multifactorial etiology, which mainly affects young women. It is currently believed that the onset of SLE and lupus flares are triggered by various environmental factors in genetically susceptible individuals. Various environmental agents and toxicants, such as cigarette smoke, alcohol, occupationally- and non-occupationally-related chemicals, ultraviolet light, infections, sex hormones and certain medications and vaccines, have been implicated to induce SLE onset or flares in a number case series, case-control and population-based cohort studies and very few randomized controlled trials. Here, we will describe some of these recognized environmental lupus triggering and perpetuating factors and explain how these factors potentially bias the immune system towards autoimmunity through their interactions with genetic and epigenetic alterations. Further in-depth exploration of how potentially important environmental factors mechanistically interact with the immune system and the genome, which trigger the onset of SLE and lupus flares, will certainly be one of the plausible steps to prevent the onset and to decelerate the progress of the disease.
Project description:Systemic lupus erythematosus (SLE) is a devastating multisystemic autoimmune disorder. However, the molecular mechanisms underlying its pathogenesis remain elusive. Some patients with Noonan syndrome, a congenital disorder predominantly caused by gain-of-function mutations in the protein tyrosine phosphatase SH2 domain-containing PTP (SHP2), have been shown to develop SLE, suggesting a functional correlation between phosphatase activity and systemic autoimmunity. To test this directly, we measured SHP2 activity in spleen lysates isolated from lupus-prone MRL/lpr mice and found it was markedly increased compared with that in control mice. Similar increases in SHP2 activity were seen in peripheral blood mononuclear cells isolated from lupus patients relative to healthy patients. To determine whether SHP2 alters autoimmunity and related immunopathology, we treated MRL/lpr mice with an SHP2 inhibitor and found increased life span, suppressed crescentic glomerulonephritis, reduced spleen size, and diminished skin lesions. SHP2 inhibition also reduced numbers of double-negative T cells, normalized ERK/MAPK signaling, and decreased production of IFN-? and IL-17A/F, 2 cytokines involved in SLE-associated organ damage. Moreover, in cultured human lupus T cells, SHP2 inhibition reduced proliferation and decreased production of IFN-? and IL-17A/F, further implicating SHP2 in lupus-associated immunopathology. Taken together, these data identify SHP2 as a critical regulator of SLE pathogenesis and suggest targeting of its activity as a potent treatment for lupus patients.
Project description:IL-38 is a newly identified cytokine that belongs to the IL-1 family. In our previous study, we found elevated plasma levels of IL-38 in patients with systemic lupus erythematosus (SLE). However, the clear relationship of IL-38 expression in plasma, peripheral blood mononuclear cells (PBMCs) and clinical and laboratory features needs elucidation. Additionally, we evaluated the possible role of IL-38 in regulating production of inflammatory cytokines in PBMCs in vitro. A pristane-induced murine lupus model was used to further demonstrate the effects of IL-38 on cytokines in vivo and discuss the significance of IL-38 in lupus development. The results showed that mRNA expression of IL-38 in PBMCs of patients with SLE was elevated compared with volunteers, and expression of IL-38 in both plasma and PBMCs was strongly related to clinical features, such as haematuria and proteinuria, and correlated with a SLEDAI score. Plasma levels of TNF-α, IL-1β, IL-6 and IL-23 were elevated in patients with SLE and were related to plasma levels of IL-38. In vitro, PBMCs of patients with SLE stimulated with IL-38 showed a decreased expression of the four inflammatory cytokines compared with PBMCs of patients without treatment. Interestingly, IL-38 administration in lupus mice significantly reduced the development of lupus, such as reduced proteinuria, improved histological examinations of the kidneys and down-regulated inflammatory cytokines. In conclusion, IL-38 may suppress synthesis of pro-inflammatory cytokines and therefore regulate lupus pathogenesis.