Unknown

Dataset Information

0

Identification of a Prognostic Colorectal Cancer Model Including LncRNA FOXP4-AS1 and LncRNA BBOX1-AS1 Based on Bioinformatics Analysis.


ABSTRACT: Background: Knowledge about the prognostic role of long noncoding RNA (lncRNA) in colorectal cancer (CRC) is limited. Therefore, we constructed a lncRNA-related prognostic model based on data from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA). Materials and Methods: CRC transcriptome and clinical data were downloaded from the GSE20916 dataset and the TCGA database, respectively. R software was used for data processing and analysis. The differential lncRNA expression within the two datasets was first screened, and then intersections were measured. Cox regression and the Kaplan-Meier method were used to evaluate the effects of various factors on prognosis. The area under the curve (AUC) of the receiver operating characteristic curve and a nomogram based on multivariate Cox analysis were used to estimate the prognostic value of the lncRNA-related model. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were applied to elucidate the significantly involved biological functions and pathways. Results: A total of 11 lncRNAs were crossed. The univariate Cox analysis screened out two lncRNAs, which were analyzed in the multivariate Cox analysis. A nomogram based on the two lncRNAs and other clinicopathological risk factors was constructed. The AUC of the nomogram was 0.56 at 3 years and 0.71 at 5 years. The 3-year nomogram model was compared with the ideal model, which showed that some indices of the 3-year model were consistent with the ideal model, suggesting that our model was highly accurate. The GO and KEGG enrichment analyses showed that positive regulation of secretion by cells, positive regulation of secretion, positive regulation of exocytosis, endocytosis, and the calcium signaling pathway were differentially enriched in the two-lncRNA-associated phenotype. Conclusions: A two-lncRNA prognostic model of CRC was constructed by bioinformatics analysis. The model had moderate prediction accuracy. LncRNA BBOX1-AS1 and lncRNA FOXP4-AS1 were identified as prognostic biomarkers.

SUBMITTER: Shi ZL 

PROVIDER: S-EPMC9805880 | biostudies-literature | 2022 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Identification of a Prognostic Colorectal Cancer Model Including LncRNA FOXP4-AS1 and LncRNA BBOX1-AS1 Based on Bioinformatics Analysis.

Shi Zhi-Liang ZL   Zhou Guo-Qiang GQ   Guo Jian J   Yang Xiao-Ling XL   Yu Cheng C   Shen Cheng-Long CL   Zhu Xin-Guo XG  

Cancer biotherapy & radiopharmaceuticals 20210121 10


<b><i>Background:</i></b> Knowledge about the prognostic role of long noncoding RNA (lncRNA) in colorectal cancer (CRC) is limited. Therefore, we constructed a lncRNA-related prognostic model based on data from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA). <b><i>Materials and Methods:</i></b> CRC transcriptome and clinical data were downloaded from the GSE20916 dataset and the TCGA database, respectively. R software was used for data processing and analysis. The different  ...[more]

Similar Datasets

| S-EPMC9204280 | biostudies-literature
| S-EPMC8712759 | biostudies-literature
| S-EPMC6529074 | biostudies-literature
| S-EPMC9852557 | biostudies-literature
| S-EPMC8577041 | biostudies-literature
| S-EPMC8150160 | biostudies-literature
| S-EPMC6572815 | biostudies-literature
| S-EPMC7377938 | biostudies-literature
| S-EPMC8607367 | biostudies-literature
| S-EPMC10423889 | biostudies-literature