Unknown

Dataset Information

0

Deep Learning Enhances Multiparametric Dynamic Volumetric Photoacoustic Computed Tomography In Vivo (DL-PACT).


ABSTRACT: Photoacoustic computed tomography (PACT) has become a premier preclinical and clinical imaging modality. Although PACT's image quality can be dramatically improved with a large number of ultrasound (US) transducer elements and associated multiplexed data acquisition systems, the associated high system cost and/or slow temporal resolution are significant problems. Here, a deep learning-based approach is demonstrated that qualitatively and quantitively diminishes the limited-view artifacts that reduce image quality and improves the slow temporal resolution. This deep learning-enhanced multiparametric dynamic volumetric PACT approach, called DL-PACT, requires only a clustered subset of many US transducer elements on the conventional multiparametric PACT. Using DL-PACT, high-quality static structural and dynamic contrast-enhanced whole-body images as well as dynamic functional brain images of live animals and humans are successfully acquired, all in a relatively fast and cost-effective manner. It is believed that the strategy can significantly advance the use of PACT technology for preclinical and clinical applications such as neurology, cardiology, pharmacology, endocrinology, and oncology.

SUBMITTER: Choi S 

PROVIDER: S-EPMC9811490 | biostudies-literature | 2022 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Deep Learning Enhances Multiparametric Dynamic Volumetric Photoacoustic Computed Tomography In Vivo (DL-PACT).

Choi Seongwook S   Yang Jinge J   Lee Soo Young SY   Kim Jiwoong J   Lee Jihye J   Kim Won Jong WJ   Lee Seungchul S   Kim Chulhong C  

Advanced science (Weinheim, Baden-Wurttemberg, Germany) 20221110


Photoacoustic computed tomography (PACT) has become a premier preclinical and clinical imaging modality. Although PACT's image quality can be dramatically improved with a large number of ultrasound (US) transducer elements and associated multiplexed data acquisition systems, the associated high system cost and/or slow temporal resolution are significant problems. Here, a deep learning-based approach is demonstrated that qualitatively and quantitively diminishes the limited-view artifacts that re  ...[more]

Similar Datasets

| S-EPMC6388697 | biostudies-literature
| S-EPMC5231285 | biostudies-literature
| S-EPMC6380242 | biostudies-literature
| S-EPMC6507202 | biostudies-literature
| S-EPMC4046831 | biostudies-literature
| S-EPMC11828441 | biostudies-literature
| S-EPMC9198371 | biostudies-literature
| S-EPMC5777675 | biostudies-literature
| S-EPMC6858583 | biostudies-literature