Unknown

Dataset Information

0

Attentive Variational Information Bottleneck for TCR-peptide interaction prediction.


ABSTRACT:

Motivation

We present a multi-sequence generalization of Variational Information Bottleneck and call the resulting model Attentive Variational Information Bottleneck (AVIB). Our AVIB model leverages multi-head self-attention to implicitly approximate a posterior distribution over latent encodings conditioned on multiple input sequences. We apply AVIB to a fundamental immuno-oncology problem: predicting the interactions between T-cell receptors (TCRs) and peptides.

Results

Experimental results on various datasets show that AVIB significantly outperforms state-of-the-art methods for TCR-peptide interaction prediction. Additionally, we show that the latent posterior distribution learned by AVIB is particularly effective for the unsupervised detection of out-of-distribution amino acid sequences.

Availability and implementation

The code and the data used for this study are publicly available at: https://github.com/nec-research/vibtcr.

Supplementary information

Supplementary data are available at Bioinformatics online.

SUBMITTER: Grazioli F 

PROVIDER: S-EPMC9825246 | biostudies-literature | 2023 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Attentive Variational Information Bottleneck for TCR-peptide interaction prediction.

Grazioli Filippo F   Machart Pierre P   Mösch Anja A   Li Kai K   Castorina Leonardo V LV   Pfeifer Nico N   Min Martin Renqiang MR  

Bioinformatics (Oxford, England) 20230101 1


<h4>Motivation</h4>We present a multi-sequence generalization of Variational Information Bottleneck and call the resulting model Attentive Variational Information Bottleneck (AVIB). Our AVIB model leverages multi-head self-attention to implicitly approximate a posterior distribution over latent encodings conditioned on multiple input sequences. We apply AVIB to a fundamental immuno-oncology problem: predicting the interactions between T-cell receptors (TCRs) and peptides.<h4>Results</h4>Experime  ...[more]

Similar Datasets

| S-EPMC10477591 | biostudies-literature
| S-EPMC7477042 | biostudies-literature
| S-EPMC7971903 | biostudies-literature
| S-EPMC9022840 | biostudies-literature
| S-EPMC8219952 | biostudies-literature
| S-EPMC7514526 | biostudies-literature
| S-EPMC8515052 | biostudies-literature
| S-EPMC10324201 | biostudies-literature
| S-EPMC3754861 | biostudies-literature
| S-EPMC9806839 | biostudies-literature