Ontology highlight
ABSTRACT: Background
Identifying the cell types using unsupervised methods is essential for scRNA-seq research. However, conventional similarity measures introduce challenges to single-cell data clustering because of the high dimensional, high noise, and high dropout.Methods
We proposed a clustering method for small ScRNA-seq data based on Subspace and Weighted Distance (SSWD), which follows the assumption that the sets of gene subspace composed of similar density-distributing genes can better distinguish cell groups. To accurately capture the intrinsic relationship among cells or genes, a new distance metric that combines Euclidean and Pearson distance through a weighting strategy was proposed. The relative Calinski-Harabasz (CH) index was used to estimate the cluster numbers instead of the CH index because it is comparable across degrees of freedom.Results
We compared SSWD with seven prevailing methods on eight publicly scRNA-seq datasets. The experimental results show that the SSWD has better clustering accuracy and the partitioning ability of cell groups. SSWD can be downloaded at https://github.com/ningzilan/SSWD.
SUBMITTER: Ning Z
PROVIDER: S-EPMC9879162 | biostudies-literature | 2023
REPOSITORIES: biostudies-literature
Ning Zilan Z Dai Zhijun Z Zhang Hongyan H Chen Yuan Y Yuan Zheming Z
PeerJ 20230123
<h4>Background</h4>Identifying the cell types using unsupervised methods is essential for scRNA-seq research. However, conventional similarity measures introduce challenges to single-cell data clustering because of the high dimensional, high noise, and high dropout.<h4>Methods</h4>We proposed a clustering method for small <b>S</b>cRNA-seq data based on <b>S</b>ubspace and <b>W</b>eighted <b>D</b>istance (SSWD), which follows the assumption that the sets of gene subspace composed of similar densi ...[more]