Unknown

Dataset Information

0

Comparative transcriptome analysis reveals the biocontrol mechanism of Bacillus velezensis E68 against Fusarium graminearum DAOMC 180378, the causal agent of Fusarium head blight.


ABSTRACT: Fusarium graminearum is the causal agent of Fusarium Head Blight, a serious disease affecting grain crops worldwide. Biological control involves the use of microorganisms to combat plant pathogens such as F. graminearum. Strains of Bacillus velezensis are common biological control candidates for use against F. graminearum and other plant pathogens, as they can secrete antifungal secondary metabolites. Here we study the interaction between B. velezensis E68 and F. graminearum DAOMC 180378 by employing a dual RNA-seq approach to assess the transcriptional changes in both organisms. In dual culture, B. velezensis up-regulated genes related to sporulation and phosphate stress and down-regulated genes related to secondary metabolism, biofilm formation and the tricarboxylic acid cycle. F. graminearum up-regulated genes encoding for killer protein 4-like proteins and genes relating to heavy metal tolerance, and down-regulated genes relating to trichothecene biosynthesis and phenol metabolism. This study provides insight into the molecular mechanisms involved in the interaction between a biocontrol bacterium and a phytopathogenic fungus.

SUBMITTER: Liang N 

PROVIDER: S-EPMC9879434 | biostudies-literature | 2023

REPOSITORIES: biostudies-literature

altmetric image

Publications

Comparative transcriptome analysis reveals the biocontrol mechanism of Bacillus velezensis E68 against Fusarium graminearum DAOMC 180378, the causal agent of Fusarium head blight.

Liang Nathan N   Charron Jean-Benoît JB   Jabaji Suha S  

PloS one 20230126 1


Fusarium graminearum is the causal agent of Fusarium Head Blight, a serious disease affecting grain crops worldwide. Biological control involves the use of microorganisms to combat plant pathogens such as F. graminearum. Strains of Bacillus velezensis are common biological control candidates for use against F. graminearum and other plant pathogens, as they can secrete antifungal secondary metabolites. Here we study the interaction between B. velezensis E68 and F. graminearum DAOMC 180378 by empl  ...[more]

Similar Datasets

| S-EPMC5983450 | biostudies-literature
| S-EPMC11194345 | biostudies-literature
2011-12-15 | GSE24636 | GEO
2011-12-15 | E-GEOD-24636 | biostudies-arrayexpress
| S-EPMC7744476 | biostudies-literature
| S-EPMC9331925 | biostudies-literature
| S-EPMC10946422 | biostudies-literature
2015-06-03 | GSE36283 | GEO
2015-06-03 | GSE54553 | GEO
2015-06-03 | GSE54552 | GEO