Project description:Sirtuin 6 (SIRT6) is a NAD+-dependent nuclear deacylase and mono-ADP-ribosylase with a wide spectrum of substrates. Through its pleiotropic activities, SIRT6 modulates either directly or indirectly key processes linked to cell fate determination and oncogenesis such as DNA damage repair, metabolic homeostasis, and apoptosis. SIRT6 regulates the expression and activity of both pro-apoptotic (e.g., Bax) and anti-apoptotic factors (e.g., Bcl-2, survivin) in a context-depending manner. Mounting evidence points towards a double-faced involvement of SIRT6 in tumor onset and progression since the block or induction of apoptosis lead to opposite outcomes in cancer. Here, we discuss the features and roles of SIRT6 in the regulation of cell death and cancer, also focusing on recently discovered small molecule modulators that can be used as chemical probes to shed further light on SIRT6 cancer biology and proposed as potential new generation anticancer therapeutics.
Project description:Autophagy, meaning "self-eating," is a cellular catabolic process that involves lysosomal degradation of cytoplasmic materials. Autophagy contributes to both quality control and energy supply of cells, which are associated with tumorigenesis and tumor development, respectively. Endometrial cancer (EC) is the most common gynecologic cancer, and its incidence is increasing. Although autophagy plays crucial roles in several types of cancer, such as pancreatic ductal adenocarcinoma, its role in EC has not been clearly demonstrated. Activation of the PI3K/AKT/mTOR pathway, which functions to suppress autophagy, is an initial step in type 1 endometrial carcinogenesis, whereas a loss-of-function mutation of TP53, which augments autophagy via p16 induction, is the main cause of type 2 endometrial carcinogenesis. Mutations in autophagy-related genes, including ATG4C, RB1CC1/FIP200, and ULK4, have been reported in EC; thus, an aberrant autophagy mechanism may be involved in endometrial carcinogenesis. Furthermore, the biguanide diabetes drug metformin, treatment with which enhances autophagy via AMPK-mediated mTOR inactivation, has been reported to reduce the risk of EC. These findings suggest that autophagy negatively regulates endometrial carcinogenesis, and autophagy inducers may be useful for chemoprevention of EC. In contrast, autophagy appears to promote EC once it is established. Consistent with this, treatment with chloroquine, an autophagy inhibitor, is reported to attenuate EC cell proliferation. Moreover, chemotherapy-induced autophagy triggers chemoresistance in EC cells. As autophagy has a tumor-promoting function, the combination of chemotherapy and autophagy inhibitors such as chloroquine could be a potent therapeutic option for patients with EC. In conclusion, autophagy plays a dual role in the prevention and treatment of EC. Therefore, targeting autophagy to prevent and treat EC requires diametrically opposed strategies.
Project description:Many genes of the human genome display pleiotropic activity, playing an important role in two or more unrelated pathways. Surprisingly, some of these functions can even be antagonistic, often letting to divergent functional outcomes depending on microenviromental cues and tissue/cell type-dependent parameters. Lately, the Bruton's tyrosine kinase (BTK) has emerged as one of such pleiotropic genes, with opposing effects in cancer pathways. While it has long been considered oncogenic in the context of B cell malignancies, recent data shows that BTK can also act as a tumour suppressor in other cells, as an essential member of the p53 and p73 responses to damage. Since BTK inhibitors are already being used clinically, it is important to carefully review these new findings in order to fully understand the consequences of blocking BTK activity in all the cells of the organism.
Project description:PB1 is a bromodomain-containing protein hypothesized to act as the nucleosome-recognition subunit of the PBAF complex. Although PB1 is a key component of the PBAF chromatin remodeling complex, its exact role has not been elucidated due to the lack of potent and selective inhibitors. Chemical probes that target specific bromodomains within the complex would constitute highly valuable tools to characterize the function and therapeutic pertinence of PB1 and of each of its bromodomains. Here, we report the design and synthesis of lead compound LM146, which displays strong stabilization of the second and fifth bromodomains of PB1 as shown by DSF. LM146 does not interact with bromodomains outside of sub-family VIII and binds to PB1(2), PB1(5), and SMARCA2B with K D values of 110, 61, and 2100 nM, respectively, providing a ∼34-fold selectivity profile for PB1(5) over SMARCA2.
Project description:Understanding diet selectivity is a longstanding goal in primate ecology. Deciphering when and why primates consume different resources can provide insights into their nutritional ecology as well as adaptations to food scarcity. Plant pith, the spongy interior of plant stems, is occasionally eaten by primates, but the context is poorly understood. We examine the ecological, mechanical, chemical, and nutritional basis of plant pith selection by a wild, frugivorous-omnivorous primate (Cebus imitator). We test the hypothesis that pith is a fallback food, that is, consumed when fruit is less abundant, and test for differences between plant species from which pith is eaten versus avoided. We collected 3.5 years of capuchin pith consumption data to document dietary species and analyzed "pith patch visits" in relation to fruit availability, visits to fruit patches, and climatic seasonality. We analyzed dietary and non-dietary species for relative pith quantity, mechanical hardness, odor composition, and macronutrient concentrations. Capuchins ate pith from 11 of ~300 plant species common in the dry forest, most commonly Bursera simaruba. We find that pith consumption is not directly related to fruit availability or fruit foraging but occurs most frequently (84% of patch visits) during the months of seasonal transition. Relative to common non-dietary species, dietary pith species have relatively higher pith quantity, have softer outer branches and pith, and contain more terpenoids, a class of bioactive compounds notable for their widespread medicinal properties. Our results suggest that greater pith quantity, lower hardness, and a more complex, terpenoid-rich odor profile contribute to species selectivity; further, as pith is likely to be consistently available throughout the year, the seasonality of pith foraging may point to zoopharmacognosy, as seasonal transitions typically introduce new parasites or pathogens. Our study furthers our understanding of how climatic seasonality impacts primate behavior and sheds new light on food choice by an omnivorous primate.
Project description:Oxidative stress, that is, an unbalanced increase in reactive oxygen species (ROS), contributes to tumor-induced immune suppression and limits the efficacy of immunotherapy. Cancer cells have inherently increased ROS production, intracellularly through metabolic perturbations and extracellularly through activation of NADPH oxidases, which promotes cancer progression. Further increased ROS production or impaired antioxidant systems, induced, for example, by chemotherapy or radiotherapy, can preferentially kill cancer cells over healthy cells. Inflammatory cell-derived ROS mediate immunosuppressive effects of myeloid-derived suppressor cells and activated granulocytes, hampering antitumor effector cells such as T cells and natural killer (NK) cells. Cancer therapies modulating ROS levels in tumors may thus have entirely different consequences when targeting cancer cells versus immune cells. Here we discuss the possibility of developing more efficient cancer therapies based on reduction-oxidation modulation, as either monotherapies or in combination with immunotherapy. Short-term, systemic administration of antioxidants or drugs blocking ROS production can boost the immune system and act in synergy with immunotherapy. However, prolonged use of antioxidants can instead enhance tumor progression. Alternatives to systemic antioxidant administration are under development where gene-modified or activated T cells and NK cells are shielded ex vivo against the harmful effects of ROS before the infusion to patients with cancer.
Project description:JAK3 is a non-receptor tyrosine kinase, predominantly expressed in hematopoietic cells and that has been implicated in the signal transduction of the common gamma chain subfamily of cytokine receptors. As a result, JAK3 plays an essential role in hematopoieisis during T cell development. JAK3 inactivating mutations result in immunodeficiency syndromes (SCID) in both humans and mice. Recent data indicate that abnormal activation of JAK3 due to activating mutations is also found in human hematological malignancies, including acute megakaryoblastic leukemia (AMKL) and cutaneous T cell lymphoma (CTCL). After a brief summary of the JAK3 structure and function, we will review the evidence on the emerging role of JAK3 activation in hematological malignancies that warrant further studies to test the relevance of specific inhibition of JAK3 as a therapeutic approach to these challenging clinical entities.
Project description:Defects in epigenetic regulation play a fundamental role in the development of cancer, and epigenetic regulators have recently emerged as promising therapeutic candidates. We therefore set out to systematically interrogate epigenetic cancer dependencies by screening an epigenome-focused deep-coverage design shRNA (DECODER) library across 58 cancer cell lines. This screen identified BRM/SMARCA2, a DNA-dependent ATPase of the mammalian SWI/SNF (mSWI/SNF) chromatin remodeling complex, as being essential for the growth of tumor cells that harbor loss of function mutations in BRG1/SMARCA4. Depletion of BRM in BRG1-deficient cancer cells leads to a cell cycle arrest, induction of senescence, and increased levels of global H3K9me3. We further demonstrate the selective dependency of BRG1-mutant tumors on BRM in vivo. Genetic alterations of the mSWI/SNF chromatin remodeling complexes are the most frequent among chromatin regulators in cancers, with BRG1/SMARCA4 mutations occurring in ∼10-15% of lung adenocarcinomas. Our findings position BRM as an attractive therapeutic target for BRG1 mutated cancers. Because BRG1 and BRM function as mutually exclusive catalytic subunits of the mSWI/SNF complex, we propose that such synthetic lethality may be explained by paralog insufficiency, in which loss of one family member unveils critical dependence on paralogous subunits. This concept of "cancer-selective paralog dependency" may provide a more general strategy for targeting other tumor suppressor lesions/complexes with paralogous subunits.