Unknown

Dataset Information

0

Surface coating by mechanofusion modulates bulk charging pathways and battery performance of Ni-rich layered cathodes.


ABSTRACT: Ni-rich layered oxides as high-capacity battery cathodes suffer from degradation at high voltages. We utilize a dry surface modification method, mechanofusion (MF), to achieve enhanced battery stability. The simplicity, high yield, and flexibility make it cost-effective and highly attractive for processing at the industrial scale. The underlying mechanisms responsible for performance improvement are unveiled by a systematic study combining multiple probes, e.g., 3D nano-tomography, spectroscopic imaging, in situ synchrotron diffraction, and finite element analysis (FEA). MF affects the bulk crystallography by introducing partially disordered structure, microstrain, and local lattice variation. Furthermore, the crack initiation and propagation pattern during delithiation are regulated and the overall mechanical fracture is reduced after such surface coating. We validate that MF can alter the bulk charging pathways. Such a synergic effect between surface modification and bulk charge distribution is fundamentally important for designing next-generation battery cathode materials.

SUBMITTER: Hou D 

PROVIDER: S-EPMC9894257 | biostudies-literature | 2022 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Surface coating by mechanofusion modulates bulk charging pathways and battery performance of Ni-rich layered cathodes.

Hou Dong D   Han Jiaxiu J   Geng Chenxi C   Xu Zhengrui Z   AlMarzooqi Modhi M MM   Zhang Jin J   Yang Zhijie Z   Min Jungki J   Xiao Xianghui X   Borkiewicz Olaf O   Wiaderek Kamila K   Liu Yijin Y   Zhao Kejie K   Lin Feng F  

Proceedings of the National Academy of Sciences of the United States of America 20221201 49


Ni-rich layered oxides as high-capacity battery cathodes suffer from degradation at high voltages. We utilize a dry surface modification method, mechanofusion (MF), to achieve enhanced battery stability. The simplicity, high yield, and flexibility make it cost-effective and highly attractive for processing at the industrial scale. The underlying mechanisms responsible for performance improvement are unveiled by a systematic study combining multiple probes, e.g., 3D nano-tomography, spectroscopic  ...[more]

Similar Datasets

| S-EPMC10037688 | biostudies-literature
| S-EPMC8035182 | biostudies-literature
| S-EPMC5111731 | biostudies-literature
| S-EPMC11922014 | biostudies-literature
| S-EPMC9321708 | biostudies-literature
| S-EPMC10928714 | biostudies-literature
| S-EPMC10609553 | biostudies-literature
| S-EPMC10876981 | biostudies-literature
| S-EPMC10586282 | biostudies-literature
| S-EPMC8421359 | biostudies-literature