Ontology highlight
ABSTRACT:
SUBMITTER: Pacheco JA
PROVIDER: S-EPMC9898520 | biostudies-literature | 2023 Feb
REPOSITORIES: biostudies-literature
Pacheco Jennifer A JA Rasmussen Luke V LV Wiley Ken K Person Thomas Nate TN Cronkite David J DJ Sohn Sunghwan S Murphy Shawn S Gundelach Justin H JH Gainer Vivian V Castro Victor M VM Liu Cong C Mentch Frank F Lingren Todd T Sundaresan Agnes S AS Eickelberg Garrett G Willis Valerie V Furmanchuk Al'ona A Patel Roshan R Carrell David S DS Deng Yu Y Walton Nephi N Satterfield Benjamin A BA Kullo Iftikhar J IJ Dikilitas Ozan O Smith Joshua C JC Peterson Josh F JF Shang Ning N Kiryluk Krzysztof K Ni Yizhao Y Li Yikuan Y Nadkarni Girish N GN Rosenthal Elisabeth A EA Walunas Theresa L TL Williams Marc S MS Karlson Elizabeth W EW Linder Jodell E JE Luo Yuan Y Weng Chunhua C Wei WeiQi W
Scientific reports 20230203 1
The electronic Medical Records and Genomics (eMERGE) Network assessed the feasibility of deploying portable phenotype rule-based algorithms with natural language processing (NLP) components added to improve performance of existing algorithms using electronic health records (EHRs). Based on scientific merit and predicted difficulty, eMERGE selected six existing phenotypes to enhance with NLP. We assessed performance, portability, and ease of use. We summarized lessons learned by: (1) challenges; ...[more]