Unknown

Dataset Information

0

Analysis of computer-aided diagnostics in the preoperative diagnosis of ovarian cancer: a systematic review.


ABSTRACT:

Objectives

Different noninvasive imaging methods to predict the chance of malignancy of ovarian tumors are available. However, their predictive value is limited due to subjectivity of the reviewer. Therefore, more objective prediction models are needed. Computer-aided diagnostics (CAD) could be such a model, since it lacks bias that comes with currently used models. In this study, we evaluated the available data on CAD in predicting the chance of malignancy of ovarian tumors.

Methods

We searched for all published studies investigating diagnostic accuracy of CAD based on ultrasound, CT and MRI in pre-surgical patients with an ovarian tumor compared to reference standards.

Results

In thirty-one included studies, extracted features from three different imaging techniques were used in different mathematical models. All studies assessed CAD based on machine learning on ultrasound, CT scan and MRI scan images. Per imaging method, subsequently ultrasound, CT and MRI, sensitivities ranged from 40.3 to 100%; 84.6-100% and 66.7-100% and specificities ranged from 76.3-100%; 69-100% and 77.8-100%. Results could not be pooled, due to broad heterogeneity. Although the majority of studies report high performances, they are at considerable risk of overfitting due to the absence of an independent test set.

Conclusion

Based on this literature review, different CAD for ultrasound, CT scans and MRI scans seem promising to aid physicians in assessing ovarian tumors through their objective and potentially cost-effective character. However, performance should be evaluated per imaging technique. Prospective and larger datasets with external validation are desired to make their results generalizable.

SUBMITTER: Koch AH 

PROVIDER: S-EPMC9931983 | biostudies-literature | 2023 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Analysis of computer-aided diagnostics in the preoperative diagnosis of ovarian cancer: a systematic review.

Koch Anna H AH   Jeelof Lara S LS   Muntinga Caroline L P CLP   Gootzen T A TA   van de Kruis Nienke M A NMA   Nederend Joost J   Boers Tim T   van der Sommen Fons F   Piek Jurgen M J JMJ  

Insights into imaging 20230215 1


<h4>Objectives</h4>Different noninvasive imaging methods to predict the chance of malignancy of ovarian tumors are available. However, their predictive value is limited due to subjectivity of the reviewer. Therefore, more objective prediction models are needed. Computer-aided diagnostics (CAD) could be such a model, since it lacks bias that comes with currently used models. In this study, we evaluated the available data on CAD in predicting the chance of malignancy of ovarian tumors.<h4>Methods<  ...[more]

Similar Datasets

| S-EPMC11394276 | biostudies-literature
| S-EPMC9785714 | biostudies-literature
| S-EPMC7445671 | biostudies-literature
| S-EPMC9653964 | biostudies-literature
| S-EPMC9141006 | biostudies-literature
| S-EPMC7091549 | biostudies-literature
| S-EPMC6374001 | biostudies-literature
| S-EPMC8715364 | biostudies-literature
| S-EPMC6584889 | biostudies-literature
| S-EPMC10582402 | biostudies-literature