Unknown

Dataset Information

0

Vitality surveillance at distance using thin-film tandem-like narrowband near-infrared photodiodes with light-enhanced responsivity.


ABSTRACT: Remote measurement of vital sign parameters like heartbeat and respiration rate represents a compelling challenge in monitoring an individual's health in a noninvasive way. This could be achieved by large field-of-view, easy-to-integrate unobtrusive sensors, such as large-area thin-film photodiodes. At long distances, however, discriminating weak light signals from background disturbance demands superior near-infrared (NIR) sensitivity and optical noise tolerance. Here, we report an inherently narrowband solution-processed, thin-film photodiode with ultrahigh and controllable NIR responsivity based on a tandem-like perovskite-organic architecture. The device has low dark currents (<10-6 mA cm-2), linear dynamic range >150 dB, and operational stability over time (>8 hours). With a narrowband quantum efficiency that can exceed 200% at 850 nm and intrinsic filtering of other wavelengths to limit optical noise, the device exhibits higher tolerance to background light than optically filtered silicon-based sensors. We demonstrate its potential in remote monitoring by measuring the heart rate and respiration rate from distances up to 130 cm in reflection.

SUBMITTER: Ollearo R 

PROVIDER: S-EPMC9937568 | biostudies-literature | 2023 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Vitality surveillance at distance using thin-film tandem-like narrowband near-infrared photodiodes with light-enhanced responsivity.

Ollearo Riccardo R   Ma Xiao X   Akkerman Hylke B HB   Fattori Marco M   Dyson Matthew J MJ   van Breemen Albert J J M AJJM   Meskers Stefan C J SCJ   Dijkstra Wijnand W   Janssen René A J RAJ   Gelinck Gerwin H GH  

Science advances 20230217 7


Remote measurement of vital sign parameters like heartbeat and respiration rate represents a compelling challenge in monitoring an individual's health in a noninvasive way. This could be achieved by large field-of-view, easy-to-integrate unobtrusive sensors, such as large-area thin-film photodiodes. At long distances, however, discriminating weak light signals from background disturbance demands superior near-infrared (NIR) sensitivity and optical noise tolerance. Here, we report an inherently n  ...[more]

Similar Datasets

| S-EPMC11688423 | biostudies-literature
| S-EPMC11612428 | biostudies-literature
| S-EPMC5465315 | biostudies-literature
| S-EPMC6492230 | biostudies-literature
| S-EPMC8282846 | biostudies-literature
| S-EPMC5459180 | biostudies-other
| S-EPMC7576172 | biostudies-literature
| S-EPMC8671406 | biostudies-literature
| S-EPMC7021507 | biostudies-literature
| S-EPMC4586438 | biostudies-literature