Unknown

Dataset Information

0

Analytical Workflows to Unlock Predictive Power in Biotherapeutic Developability.


ABSTRACT:

Purpose

Forming accurate data models that assist the design of developability assays is one area that requires a deep and practical understanding of the problem domain. We aim to incorporate expert knowledge into the model building process by creating new metrics from instrument data and by guiding the choice of input parameters and Machine Learning (ML) techniques.

Methods

We generated datasets from the biophysical characterisation of 5 monoclonal antibodies (mAbs). We explored combinations of techniques and parameters to uncover the ones that better describe specific molecular liabilities, such as conformational and colloidal instability. We also employed ML algorithms to predict metrics from the dataset.

Results

We found that the combination of Differential Scanning Calorimetry (DSC) and Light Scattering thermal ramps enabled us to identify domain-specific aggregation in mAbs that would be otherwise overlooked by common developability workflows. We also found that the response to different salt concentrations provided information about colloidal stability in agreement with charge distribution models. Finally, we predicted DSC transition temperatures from the dataset, and used the order of importance of different metrics to increase the explainability of the model.

Conclusions

The new analytical workflows enabled a better description of molecular behaviour and uncovered links between structural properties and molecular liabilities. In the future this new understanding will be coupled with ML algorithms to unlock their predictive power during developability assessment.

SUBMITTER: Trikeriotis M 

PROVIDER: S-EPMC9944381 | biostudies-literature | 2023 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Analytical Workflows to Unlock Predictive Power in Biotherapeutic Developability.

Trikeriotis Markos M   Akbulatov Sergey S   Esposito Umberto U   Anastasiou Athanasios A   Leszczyszyn Oksana I OI  

Pharmaceutical research 20221205 2


<h4>Purpose</h4>Forming accurate data models that assist the design of developability assays is one area that requires a deep and practical understanding of the problem domain. We aim to incorporate expert knowledge into the model building process by creating new metrics from instrument data and by guiding the choice of input parameters and Machine Learning (ML) techniques.<h4>Methods</h4>We generated datasets from the biophysical characterisation of 5 monoclonal antibodies (mAbs). We explored c  ...[more]

Similar Datasets

| S-EPMC11296533 | biostudies-literature
| S-EPMC7983927 | biostudies-literature
| S-EPMC9036759 | biostudies-literature
| S-EPMC10333263 | biostudies-literature
| S-EPMC7055369 | biostudies-literature
| S-EPMC9264916 | biostudies-literature
| S-EPMC11379727 | biostudies-literature
| S-EPMC8135100 | biostudies-literature
| S-EPMC7217010 | biostudies-literature
| S-EPMC3605113 | biostudies-literature