Unknown

Dataset Information

0

Bayesian inference of chemical exposures from NHANES urine biomonitoring data.


ABSTRACT:

Background

Knowing which environmental chemicals contribute to metabolites observed in humans is necessary for meaningful estimates of exposure and risk from biomonitoring data.

Objective

Employ a modeling approach that combines biomonitoring data with chemical metabolism information to produce chemical exposure intake rate estimates with well-quantified uncertainty.

Methods

Bayesian methodology was used to infer ranges of exposure for parent chemicals of biomarkers measured in urine samples from the U.S population by the National Health and Nutrition Examination Survey (NHANES). Metabolites were probabilistically linked to parent chemicals using the NHANES reports and text mining of PubMed abstracts.

Results

Chemical exposures were estimated for various population groups and translated to risk-based prioritization using toxicokinetic (TK) modeling and experimental data. Exposure estimates were investigated more closely for children aged 3 to 5 years, a population group that debuted with the 2015-2016 NHANES cohort.

Significance

The methods described here have been compiled into an R package, bayesmarker, and made publicly available on GitHub. These inferred exposures, when coupled with predicted toxic doses via high throughput TK, can help aid in the identification of public health priority chemicals via risk-based bioactivity-to-exposure ratios.

SUBMITTER: Stanfield Z 

PROVIDER: S-EPMC9979158 | biostudies-literature | 2022 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Bayesian inference of chemical exposures from NHANES urine biomonitoring data.

Stanfield Zachary Z   Setzer R Woodrow RW   Hull Victoria V   Sayre Risa R RR   Isaacs Kristin K KK   Wambaugh John F JF  

Journal of exposure science & environmental epidemiology 20220817 6


<h4>Background</h4>Knowing which environmental chemicals contribute to metabolites observed in humans is necessary for meaningful estimates of exposure and risk from biomonitoring data.<h4>Objective</h4>Employ a modeling approach that combines biomonitoring data with chemical metabolism information to produce chemical exposure intake rate estimates with well-quantified uncertainty.<h4>Methods</h4>Bayesian methodology was used to infer ranges of exposure for parent chemicals of biomarkers measure  ...[more]

Similar Datasets

| S-EPMC10824265 | biostudies-literature
| S-EPMC4375973 | biostudies-literature
| S-EPMC3515548 | biostudies-other
| S-EPMC8591481 | biostudies-literature
| S-EPMC4821170 | biostudies-literature
| S-EPMC3622196 | biostudies-literature
| S-EPMC5793680 | biostudies-literature
| S-EPMC11682272 | biostudies-literature
| S-EPMC8862759 | biostudies-literature
| S-EPMC5006116 | biostudies-literature