Project description:The transient receptor potential Ankyrin-1 (TRPA1) ion channel is modulated by myriad noxious stimuli that interact with multiple regions of the channel, including cysteine-reactive natural extracts from onion and garlic which modify residues in the cytoplasmic domains. The way in which TRPA1 cytoplasmic domain modification is coupled to opening of the ion-conducting pore has yet to be elucidated. The cryo-EM structure of TRPA1 revealed a tetrameric C-terminal coiled-coil surrounded by N-terminal ankyrin repeat domains (ARDs), an architecture shared with the canonical transient receptor potential (TRPC) ion channel family. Similarly, structures of the TRP melastatin (TRPM) ion channel family also showed a C-terminal coiled-coil surrounded by N-terminal cytoplasmic domains. This conserved architecture may indicate a common gating mechanism by which modification of cytoplasmic domains can transduce conformational changes to open the ion-conducting pore. We developed an in vitro system in which N-terminal ARDs and C-terminal coiled-coil domains can be expressed in bacteria and maintain the ability to interact. We tested three gating regulators: temperature; the polyphosphate compound IP6; and the covalent modifier allyl isothiocyanate to determine whether they alter N- and C-terminal interactions. We found that none of the modifiers tested abolished ARD-coiled-coil interactions, though there was a significant reduction at 37˚C. We found that coiled-coils tetramerize in a concentration dependent manner, with monomers and trimers observed at lower concentrations. Our system provides a method for examining the mechanism of oligomerization of TRPA1 cytoplasmic domains as well as a system to study the transmission of conformational changes resulting from covalent modification.
Project description:The TRPA1 ion channel (also known as the wasabi receptor) is a detector of noxious chemical agents encountered in our environment or produced endogenously during tissue injury or drug metabolism. These include a broad class of electrophiles that activate the channel through covalent protein modification. TRPA1 antagonists hold potential for treating neurogenic inflammatory conditions provoked or exacerbated by irritant exposure. Despite compelling reasons to understand TRPA1 function, structural mechanisms underlying channel regulation remain obscure. Here we use single-particle electron cryo- microscopy to determine the structure of full-length human TRPA1 to ∼4 Å resolution in the presence of pharmacophores, including a potent antagonist. Several unexpected features are revealed, including an extensive coiled-coil assembly domain stabilized by polyphosphate co-factors and a highly integrated nexus that converges on an unpredicted transient receptor potential (TRP)-like allosteric domain. These findings provide new insights into the mechanisms of TRPA1 regulation, and establish a blueprint for structure-based design of analgesic and anti-inflammatory agents.
Project description:The human Transient Receptor Potential A1 (hTRPA1) ion channel, also known as the wasabi receptor, acts as a biosensor of various potentially harmful stimuli. It is activated by a wide range of chemicals, including the electrophilic compound N-methylmaleimide (NMM), but the mechanism of activation is not fully understood. Here, we used mass spectrometry to map and quantify the covalent labeling in hTRPA1 at three different concentrations of NMM. A functional truncated version of hTRPA1 (Δ1-688 hTRPA1), lacking the large N-terminal ankyrin repeat domain (ARD), was also assessed in the same way. In the full length hTRPA1, the labeling of different cysteines ranged from nil up to 95% already at the lowest concentration of NMM, suggesting large differences in reactivity of the thiols. Most important, the labeling of some cysteine residues increased while others decreased with the concentration of NMM, both in the full length and the truncated protein. These findings indicate a conformational switch of the proteins, possibly associated with activation or desensitization of the ion channel. In addition, several lysines in the transmembrane domain and the proximal N-terminal region were labeled by NMM, raising the possibility that lysines are also key targets for electrophilic activation of hTRPA1.
Project description:Streptozotocin (STZ)-induced diabetes is the most commonly used animal model of diabetes. Here, we have demonstrated that intraplantar injections of low dose STZ evoked acute polymodal hypersensitivities in mice. These hypersensitivities were inhibited by a TRPA1 antagonist and were absent in TRPA1-null mice. In wild type mice, systemic STZ treatment (180 mg/kg) evoked a loss of cold and mechanical sensitivity within an hour of injection, which lasted for at least 10 days. In contrast, Trpa1(-/-) mice developed mechanical, cold, and heat hypersensitivity 24 h after STZ. The TRPA1-dependent sensory loss produced by STZ occurs before the onset of diabetes and may thus not be readily distinguished from the similar sensory abnormalities produced by the ensuing diabetic neuropathy. In vitro, STZ activated TRPA1 in isolated sensory neurons, TRPA1 cell lines, and membrane patches. Mass spectrometry studies revealed that STZ oxidizes TRPA1 cysteines to disulfides and sulfenic acids. Furthermore, incubation of tyrosine with STZ resulted in formation of dityrosine, suggesting formation of peroxynitrite. Functional analysis of TRPA1 mutants showed that cysteine residues that were oxidized by STZ were important for TRPA1 responsiveness to STZ. Our results have identified oxidation of TRPA1 cysteine residues, most likely by peroxynitrite, as a novel mechanism of action of STZ. Direct stimulation of TRPA1 complicates the interpretation of results from STZ models of diabetic sensory neuropathy and strongly argues that more refined models of diabetic neuropathy should replace the use of STZ.
Project description:TRPA1 (transient receptor potential ankyrin 1) is an ion channel expressed in the termini of sensory neurons and is activated in response to a broad array of noxious exogenous and endogenous thiol-reactive compounds, making it a crucial player in chemical nociception. A number of conserved cysteine residues on the N-terminal domain of the channel have been identified as critical for sensing these electrophilic pungent chemicals, and our recent EM structure with modeled domains predicts that these cysteines form a ligand-binding pocket, allowing for the possibility of disulfide bonding between the cysteine residues. Here, we present a comprehensive mass spectrometry investigation of the in vivo disulfide bonding conformation and in vitro reactivity of 30 of the 31 cysteine residues in the TRPA1 ion channel. Four disulfide bonds were detected in the in vivo TRPA1 structure: Cys-666-Cys-622, Cys-666-Cys-463, Cys-622-Cys-609, and Cys-666-Cys-193. All of the cysteines detected were reactive to N-methylmaleimide (NMM) in vitro, with varying degrees of labeling efficiency. Comparison of the ratio of the labeling efficiency at 300 μM versus 2 mM NMM identified a number of cysteine residues that were outliers from the mean labeling ratio, suggesting that protein conformation changes rendered these cysteines either more or less protected from labeling at the higher NMM concentrations. These results indicate that the activation mechanism of TRPA1 may involve N-terminal conformation changes and disulfide bonding between critical cysteine residues.
Project description:The Ca(2+)-permeable cation channel TRPA1 acts as an ionotropic receptor for various pungent compounds and as a noxious cold sensor in sensory neurons. It is unclear what proportion of the TRPA1-mediated current is carried by Ca(2+) ions and how the permeation pathway changes during stimulation. Here, based on the relative permeability of the nonstimulated channel to cations of different size, we estimated a pore diameter of approximately 11 A. Combined patch-clamp and Fura-2 fluorescence recordings revealed that with 2 mM extracellular Ca(2+), and at a membrane potential of -80 mV, approximately 17% of the inward TRPA1 current is carried by Ca(2+). Stimulation with mustard oil evoked an apparent dilatation of the pore of 3 A and an increase in divalent cation selectivity and fractional Ca(2+) current. Mutations in the putative pore that reduced the divalent permeability and fractional Ca(2+) current also prevented mustard-oil-induced increases in Ca(2+) permeation. It is interesting that fractional Ca(2+) currents for wild-type and mutant TRPA1 were consistently higher than values predicted based on biionic reversal potentials using the Goldman-Hodgkin-Katz equation, suggesting that binding of Ca(2+) in the pore hinders monovalent cation permeation. We conclude that the pore of TRPA1 is dynamic and supports a surprisingly large Ca(2+) influx.
Project description:The TRPA1 ion channel is activated by electrophilic compounds through the covalent modification of intracellular cysteine residues. How non-covalent agonists activate the channel and whether covalent and non-covalent agonists elicit the same physiological responses are not understood. Here, we report the discovery of a non-covalent agonist, GNE551, and determine a cryo-EM structure of the TRPA1-GNE551 complex, revealing a distinct binding pocket and ligand-interaction mechanism. Unlike the covalent agonist allyl isothiocyanate, which elicits channel desensitization, tachyphylaxis, and transient pain, GNE551 activates TRPA1 into a distinct conducting state without desensitization and induces persistent pain. Furthermore, GNE551-evoked pain is relatively insensitive to antagonist treatment. Thus, we demonstrate the biased agonism of TRPA1, a finding that has important implications for the discovery of effective drugs tailored to different disease etiologies.
Project description:Stimulus-coupled incretin secretion from enteroendocrine cells plays a fundamental role in glucose homeostasis and could be targeted for the treatment of type 2 diabetes. Here, we investigated the expression and function of transient receptor potential (TRP) ion channels in enteroendocrine L cells producing GLP-1. By microarray and quantitative PCR analysis, we identified trpa1 as an L cell-enriched transcript in the small intestine. Calcium imaging of primary L cells and the model cell line GLUTag revealed responses triggered by the TRPA1 agonists allyl-isothiocyanate (mustard oil), carvacrol, and polyunsaturated fatty acids, which were blocked by TRPA1 antagonists. Electrophysiology in GLUTag cells showed that carvacrol induced a current with characteristics typical of TRPA1 and triggered the firing of action potentials. TRPA1 activation caused an increase in GLP-1 secretion from primary murine intestinal cultures and GLUTag cells, an effect that was abolished in cultures from trpa1(-/-) mice or by pharmacological TRPA1 inhibition. These findings present TRPA1 as a novel sensory mechanism in enteroendocrine L cells, coupled to the facilitation of GLP-1 release, which may be exploitable as a target for treating diabetes.
Project description:Transient receptor potential ankyrin 1 (TRPA1) is a non-selective ion channel, which is expressed in nociceptor sensory neurons and transduces chemical, inflammatory, and neuropathic pain signals. Numerous non-reactive compounds and electrophilic compounds, such as endogenous inflammatory mediators and exogenous pungent chemicals, can activate TRPA1. Here we report a 16-Å resolution structure of purified, functional, amphipol-stabilized TRPA1 analyzed by single-particle EM. Molecular models of the N and C termini of the channel were generated using the I-TASSER protein structure prediction server and docked into the EM density to provide insight into the TRPA1 subunit organization. This structural analysis suggests a location for critical N-terminal cysteine residues involved in electrophilic activation at the interface between neighboring subunits. Our results indicate that covalent modifications within this pocket may alter interactions between subunits and promote conformational changes that lead to channel activation.
Project description:The transient receptor potential A1 (TRPA1) channel is the molecular target for environmental irritants and pungent chemicals, such as cinnamaldehyde and mustard oil. Extracellular Ca(2+) is a key regulator of TRPA1 activity, both potentiating and subsequently inactivating it. In this report, we provide evidence that the effect of extracellular Ca(2+) on these processes is indirect and can be entirely attributed to entry through TRPA1 and subsequent elevation of intracellular calcium. Specifically, we found that in a pore mutant of TRPA1, D918A, in which Ca(2+) permeability was greatly reduced, extracellular Ca(2+) produced neither potentiation nor inactivation. Both processes were restored by reducing intracellular Ca(2+) buffering, which allowed intracellular Ca(2+) levels to become elevated upon entry through D918A channels. Application of Ca(2+) to the cytosolic face of excised patches was sufficient to produce both potentiation and inactivation of TRPA1 channels. Moreover, in whole cell recordings, elevation of intracellular Ca(2+) by UV uncaging of 1-(4,5-dimethoxy-2-nitrophenyl)-EDTA-potentiated TRPA1 currents. In addition, our data show that potentiation and inactivation are independent processes. TRPA1 currents could be inactivated by Mg(2+), Ba(2+), and Ca(2+) but potentiated only by Ba(2+) and Ca(2+). Saturating activation by cinnamaldehyde or mustard oil occluded potentiation but did not interfere with inactivation. Last, neither process was affected by mutation of a putative intracellular Ca(2+)-binding EF-hand motif. In conclusion, we have further clarified the mechanisms of potentiation and inactivation of TRPA1 using the D918A pore mutant, an important tool for investigating the contribution of Ca(2+) influx through TRPA1 to nociceptive signaling.