Project description:Steroid receptors activate gene transcription by recruiting coactivators to initiate transcription of their target genes. For most nuclear receptors, the ligand-dependent activation function domain-2 (AF-2) is a primary contributor to the nuclear receptor (NR) transcriptional activity. In contrast to other steroid receptors, such as ERα, the activation function of androgen receptor (AR) is largely dependent on its ligand-independent AF-1 located in its N-terminal domain (NTD). It remains unclear why AR utilizes a different AF domain from other receptors despite that NRs share similar domain organizations. Here, we present cryoelectron microscopy (cryo-EM) structures of DNA-bound full-length AR and its complex structure with key coactivators, SRC-3 and p300. AR dimerization follows a unique head-to-head and tail-to-tail manner. Unlike ERα, AR directly contacts a single SRC-3 and p300. The AR NTD is the primary site for coactivator recruitment. The structures provide a basis for understanding assembly of the AR:coactivator complex and its domain contributions for coactivator assembly and transcriptional regulation.
Project description:Constitutively active androgen receptor (AR) variants have been involved in the expression of mesenchymal markers such as N-cadherin in prostate cancer (PCa). However, the underlying molecular mechanisms remain elusive. It remains unclear, whether N-cadherin gene (CDH2) is a direct transcriptional target of AR variants or whether the observed upregulation is due to indirect effects through additional regulatory factors. Moreover, the specific contribution of full-length AR and AR variants in N-cadherin regulation in PCa has never been explored deeply. To investigate this, we artificially mimicked the co-expression of AR variants together with a full-length AR and performed miRNA-seq, RNA-seq and ChIP assays. Our results were in favor of a direct AR variants action on CDH2. Our data also revealed a distinctive mode of action between full-length AR and AR variants to regulate N-cadherin expression. Both wild type AR and AR variants could interact with a regulatory element in intron 1 of CDH2. However, a higher histone H4 acetylation in this genomic region was only observed with AR variants. This suggests that full-length AR may play an occluding function to impede CDH2 upregulation. Our data further highlighted a negative effect of AR variants on the expression of the endogenous full-length AR in LNCaP. These differences in the mode of action of AR variants and full-length AR for the control of one key gene for prostate cancer progression could be worth considering for targeting AR variants in PCa.
Project description:Androgen receptor (AR) splice variants lacking the ligand binding domain (ARVs), originally isolated from prostate cancer cell lines derived from a single patient, are detected in normal and malignant human prostate tissue, with the highest levels observed in late stage, castration-resistant prostate cancer. The most studied variant (called AR-V7 or AR3) activates AR reporter genes in the absence of ligand and therefore, could play a role in castration resistance. To explore the range of potential ARVs, we screened additional human and murine prostate cancer models using conventional and next generation sequencing technologies and detected several structurally diverse AR isoforms. Some, like AR-V7/AR3, display gain of function, whereas others have dominant interfering activity. We also find that ARV expression increases acutely in response to androgen withdrawal, is suppressed by testosterone, and in some models, is coupled to full-length AR (AR-FL) mRNA production. As expected, constitutively active, ligand-independent ARVs such as AR-V7/AR3 are sufficient to confer anchorage-independent (in vitro) and castration-resistant (in vivo) growth. Surprisingly, this growth is blocked by ligand binding domain-targeted antiandrogens, such as MDV3100, or by selective siRNA silencing of AR-FL, indicating that the growth-promoting effects of ARVs are mediated through AR-FL. These data indicate that the increase in ARV expression in castrate-resistant prostate cancer is an acute response to castration rather than clonal expansion of castration or antiandrogen-resistant cells expressing gain of function ARVs, and furthermore, they provide a strategy to overcome ARV function in the clinic.
Project description:Owing to the marked sexual dimorphism of hepatocellular carcinoma (HCC), sex hormone receptor signaling has been implicated in numerous aspects of liver cancer pathogenesis. We sought to reconcile the clear contribution of androgen receptor (AR) activity that has been established in preclinical models of HCC with the clinical failure of AR antagonists in patients with advanced HCC by evaluating potential resistance mechanisms to AR-targeted therapy. The AR locus was interrogated for resistance-causing genomic modifications using publicly available primary HCC datasets (1,019 samples). Analysis of HCC tumor and cell line RNA-seq data revealed enriched expression of constitutively active, treatment-refractory AR splice variants (AR-SV). HCC cell lines expressed C-terminal-truncated AR-SV; 28 primary HCC samples abundantly expressed AR-SV. Low molecular weight AR species were nuclear localized and constitutively active. Furthermore, AR/AR-SV signaling promoted AR-mediated HCC cell progression and conferred resistance to AR antagonists. Ligand-dependent and -independent AR signaling mediated HCC epithelial-to-mesenchymal transition by regulating the transcription factor SLUG. These data suggest that AR-SV expression in HCC drives HCC progression and resistance to traditional AR antagonists. Novel therapeutic approaches that successfully target AR-SVs may be therapeutically beneficial for HCC. SIGNIFICANCE: Treatment-refractory, constitutively active androgen receptor splice variants promote hepatocellular carcinoma progression by regulating the epithelial-to-mesenchymal transition pathway.
Project description:We have isolated a genomic locus from Chinese hamster ovary (CHO) cells that contains a full-length provirus. Nucleotide sequence analysis indicates that it is a defective member of the rodent type C retrovirus family with an env region that is similar to those of mouse amphotropic retrovirus and subgroup B feline leukemia virus. We were able to demonstrate that this provirus is a member of a closely related family of full-length proviruses in CHO cells and Chinese hamster liver. Hybridization probes generated from this genomic clone were used to characterize type C retrovirus RNA expression in CHO cells. Full-length genomic RNA and subgenomic envelope mRNA were detected in CHO cell lines but not in the human-derived 293 cell line. Interestingly, we discovered that the site of retrovirus integration lies within a G repeat sequence belonging to the short interspersed element family of retroposons.
Project description:Upregulation of constitutively-active androgen receptor splice variants (AR-Vs) has been implicated in AR-driven tumor progression in castration-resistant prostate cancer. To date, functional studies of AR-Vs have been focused mainly on their ability to regulate gene expression independent of the full-length AR (AR-FL). Here, we showed that AR-V7 and ARv567es, two major AR-Vs, both facilitated AR-FL nuclear localization in the absence of androgen and mitigated the ability of the antiandrogen enzalutamide to inhibit AR-FL nuclear trafficking. AR-V bound to the promoter of its specific target without AR-FL, but co-occupied the promoter of canonical AR target with AR-FL in a mutually-dependent manner. AR-V expression attenuated both androgen and enzalutamide modulation of AR-FL activity/cell growth, and mitigated the in vivo antitumor efficacy of enzalutamide. Furthermore, ARv567es levels were upregulated in xenograft tumors that had acquired enzalutamide resistance. Collectively, this study highlights a dual function of AR-Vs in mediating castration resistance. In addition to trans-activating target genes independent of AR-FL, AR-Vs can serve as a "rheostat" to control the degree of response of AR-FL to androgen-directed therapy via activating AR-FL in an androgen-independent manner. The findings shed new insights into the mechanisms of AR-V-mediated castration resistance and have significant therapeutic implications.
Project description:Prostate cancer is the most prevalent cancer in men worldwide and is promoted by the sex hormone androgen. Expression of androgen from the testis can be significantly reduced through castration. However, as most prostate cancer patients acquire castration resistance, additional therapeutic solutions are necessary. Although anti-androgens, such as enzalutamide, have been used to treat castration-resistant prostate cancer (CRPC), enzalutamide-resistant CRPC (Enz-resistant CRPC) has emerged. Therefore, development of novel treatments for Enz-resistant CRPC is urgent. In this study, we found a novel anti-androgen called pinostilbene through screening with a GAL4-transactivation assay. We confirmed that pinostilbene directly binds to androgen receptor (AR) and inhibits its activation and translocalization. Pinostilbene treatment also reduced the protein level and downstream gene expression of AR. Furthermore, pinostilbene reduced the protein level of AR variant 7 in the Enz-resistant prostate cancer cell line 22Rv1 and inhibited cell viability and proliferation. Our results suggest that pinostilbene has the potential to treat Enz-resistant CRPC.
Project description:Continued androgen receptor (AR) signaling is an established mechanism underlying castration-resistant prostate cancer (CRPC), and suppression of AR signaling remains a therapeutic goal of CRPC therapy. Constitutively active androgen receptor splicing variants (AR-Vs) lack the AR ligand-binding domain (AR-LBD), the intended target of androgen deprivation therapies (ADT) including new CRPC therapies such as abiraterone and MDV3100. While the canonical full-length AR (AR-FL) and AR-Vs are both increased in CRPC, their expression regulation, associated transcriptional programs, functional relationships, and respective roles in mediating responses to endocrine therapies have not been dissected. In this study, we show that suppression of canonical AR-FL signaling by targeting AR-LBD leads to increased AR-V expression in two cell line models of CRPC. Importantly, treatment-induced AR-Vs activate a distinct expression signature enriched for cell cycle genes without requiring the presence of AR-FL. Conversely, activation of AR-FL signaling suppresses the AR-V signature but activates expression programs mainly associated with macromolecular synthesis, metabolism, and differentiation. In prostate cancer cells and CRPC xenografts treated with MDV3100 and abiraterone, increased expression of two constitutively active AR-Vs, AR-V7 and ARV567ES, but not AR-FL, parallels increased expression of the AR-driven cell cycle gene UBE2C. In addition, protein expression of AR-V7, but not AR-FL, is positively correlated with UBE2C in clinical CRPC specimens. The cumulative in vitro and in vivo evidence support an adaptive shift toward AR-V-mediated signaling in at least a subset of CRPC tumors as the AR-LBD is rendered inactive, suggesting an important mechanism contributing to drug resistance to CRPC therapies. LNCaP cells lacking AR-V were transfected with AR-V7 with or without androgen stimulation of AR-FL (4 conditions); LNCaP95 cells expressing AR-Vs were treated with control siRNA or siRNA trageting AR-LBD or AR-DBD, with or without androgen stimulation of AR-FL (6 conditions); VCaP cells expressing AR-Vs in the presence of androgen were treated with control siRNA, siRNA trageting AR-LBD, DMSO or MDV3100 to inhibit AR-FL (4 conditions). Total 14 arrays with no replicates.